Researchers study a new way to lower LDL cholesterol

March 7, 2017
Space-filling model of the Cholesterol molecule. Credit: RedAndr/Wikipedia

In a paper published in Biochemical Pharmacology, Saint Louis University researchers examined the way a nuclear receptor called REV-ERB is involved in regulating cholesterol metabolism. Their findings suggest that drugs targeting this nuclear receptor may be able to lower LDL (bad) cholesterol in an animal model.

Thomas Burris, Ph.D., chair of pharmacology and physiology at Saint Louis University, studies nuclear receptor signaling, the cellular messaging system that underlies many physiological process used by the body. He identifies natural hormones that regulate and then develops synthetic compounds to target these receptors in order to develop drugs to treat diseases.

One such nuclear receptor is REV-ERB, a protein that plays multiple roles. In the past, Burris has studied its role in regulating mammals' internal clocks.

With a recent $1,362,032 grant from the U.S. Department of Defense to study the nuclear receptor's connection to diabetes and obesity, Burris and his team turned their attention to REV-ERB's role in regulating .

Cholesterol is an essential component of the cell membrane. Atherosclerosis - plaque buildup in the arteries—results from an imbalance in . Drugs like statins can lower low-density lipoprotein (LDL) cholesterol levels and risk of atherosclerosis, but they don't work for everyone and some patients discontinue them because of side effects. For these reasons, additional cholesterol lowering drugs are needed.

Nuclear receptors regulate essential physiological processes such as growth, development and metabolic homeostasis. REV-ERB is a nuclear receptor that binds to specific DNA sequences and limits the transcription of target genes.

Studies over the last decade have made clear the important role that REV-ERB plays in metabolic pathways. Previous data demonstrated that REV-ERB deficiency leads to disrupted lipid metabolism; mice that are deficient in REV-ERB expression show a significant increase in LDL and total cholesterol.

Similarly, in a previous study, Burris found that a synthetic version of REV-ERB called SR9009 reduces total plasma cholesterol and triglyceride levels in an .

In this study, Burris found that REV-ERB plays a role in the suppression of several cholesterol-related enzyme genes and that pharmacological activation of REV-ERB leads to further suppression of these genes, which correlates with reduced cholesterol levels.

These results reveal more about the way in which REV-ERB directly and indirectly regulates cholesterol, and suggest that targeting REV-ERB may be an effective method for suppressing LDL in the clinic.

Explore further: New role of cholesterol in regulating brain proteins discovered

More information: Sadichha Sitaula et al, Rev-erb regulation of cholesterologenesis, Biochemical Pharmacology (2017). DOI: 10.1016/j.bcp.2017.02.006

Related Stories

New role of cholesterol in regulating brain proteins discovered

February 23, 2017
A study led by researchers at the Hospital del Mar Medical Research Institute (IMIM) and the Faculty of Medicine in Charité Hospital, Berlin demonstrates that the cholesterol present in cell membranes can interfere with ...

Study finds key protein that binds to LDL cholesterol

November 21, 2016
A Yale-led research team identified a protein that plays an important role in the buildup of LDL cholesterol in blood vessels. The finding could lead to an additional strategy to block LDL accumulation, which could help prevent ...

New lipid-lowering drugs help patients reduce LDL cholesterol

August 1, 2016
A recent analysis indicates that adding new therapies called anti-PCSK9 antibodies to other lipid-lowering treatments can help patients lower their LDL cholesterol levels.

Cholesterol helps regulate key signaling proteins in the cell

December 19, 2012
Cholesterol plays a key role in regulating proteins involved in cell signaling and may be important to many other cell processes, an international team of researchers has found.

Recommended for you

Could this protein protect people against coronary artery disease?

November 17, 2017
The buildup of plaque in the heart's arteries is an unfortunate part of aging. But by studying the genetic makeup of people who maintain clear arteries into old age, researchers led by UNC's Jonathan Schisler, PhD, have identified ...

Raising 'good' cholesterol fails to protect against heart disease

November 16, 2017
Raising so-called 'good' cholesterol by blocking a key protein involved in its metabolism does not protect against heart disease or stroke, according to a large genetic study of 150,000 Chinese adults published in the journal ...

New model estimates odds of events that trigger sudden cardiac death

November 16, 2017
A new computational model of heart tissue allows researchers to estimate the probability of rare heartbeat irregularities that can cause sudden cardiac death. The model, developed by Mark Walker and colleagues from Johns ...

Popular e-cigarette liquid flavorings may change, damage heart muscle cells

November 16, 2017
Chemicals used to make some popular e-cigarette liquid flavorings—including cinnamon, clove, citrus and floral—may cause changes or damage to heart muscle cells, new research indicates.

Possible use for botulinum toxin to treat atrial fibrillation

November 16, 2017
From temporarily softening wrinkles to easing migraines, botulinum toxin has become a versatile medical remedy because of its ability to block nerve signals that can become bothersome or risky.

Proteome of the human heart mapped for the first time

November 15, 2017
A healthy heart beats about two billion times during a lifetime, thanks to the interplay of more than 10,000 proteins. Researchers from the Max Planck Institute of Biochemistry (MPIB) and the German Heart Centre at the Technical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.