Mathematical models improve the quality and efficacy of radiotherapy

March 30, 2017, Tilburg University

Radiotherapy, in which radioactive radiation is used to damage cancer cells, is a common cancer treatment. However, the people applying the treatment are only human and there are other uncertainties involved in it. On March 31st, Marleen Balvert will be defending her PhD thesis in which she shows that these risk scan be reduced using mathematical optimization models.

Because can penetrate healthy tissue, radiotherapy is eminently suitable for the treatment of deep-seated tumors that are difficult to get at for surgeons because of the surrounding tissue. Unfortunately, it is impossible to prevent that a certain amount of radiation will affect the surrounding tissue. However, the that reaches these organs can be reduced by, among other things, choosing the right positions from which radiation is applied, the intensity of the radiation, and the duration of the radiation. Mathematical models can help doctors find the right balance between the quality of the treatment plan in terms of high doses for the tumor and low doses to surrounding tissue.

Uncertainties in treatment plans

In making a treatment plan, uncertainties cannot be avoided. A plan is made on the basis of a body scan in which the exact locations of the tumor and the healthy are difficult to pinpoint. The true position of the tumor or a healthy organ can deviate slightly from the position the doctor has observed in the scan. As a result, the radiation dose that reaches the tumor can be too low. To reduce the risks a mathematical has been developed in which these uncertainties are incorporated. The model includes all possible locations of the tumor and the healthy organs, and yields a treatment plan that in the worst-case scenario offers the best treatment possible.

Reducing the risk of too low doses

The new optimization model has been developed for brachytheraphy, a in which tiny radioactive sources are inserted into the tumor and irradiate the tumor from within. The model has been tested with data from six prostate cancer patients. The results show that in comparison to the currently utilized clinical method the new planning model reduces the risks of getting too low doses in the . Further research with data from a larger group of patients is required to substantiate these results.

Explore further: Preventing radiation in cancer therapies to damage healthy organs

Related Stories

Preventing radiation in cancer therapies to damage healthy organs

November 11, 2015
When a person receives radiation cancer treatment, he or she is exposed to ionizing radiation; to prevent damaging healthy tissue, Dr. Guerda Massillon, researcher at the National University of Mexico (UNAM), studied the ...

Novel radiation therapy safely treats prostate cancer and lowers the risk of recurrence

June 26, 2012
A recent Phase I/II clinical trial has shown that a new combination of radiation therapies developed at Virginia Commonwealth University Massey Cancer Center escalates radiation doses to safely and effectively treat prostate ...

Lung cancer clinical trial finds lung function without additional imaging

January 6, 2016
A newly NIH funded clinical trial (NCT02528942) by University of Colorado Cancer Center investigators and collaborators at Beaumont Health in Michigan and the University of Texas Medical Branch is evaluating a new method ...

Researchers identifiy more accurate treatment delivery for robotic radiosurgery system

October 2, 2011
– Radiosurgery is a non-invasive medical procedure in which focused beams of high-energy X-rays target tumors and other abnormalities in the body. A single large dose of radiation is capable of ablating a lesion that ...

Recommended for you

Study tracks evolutionary transition to destructive cancer

February 23, 2018
Evolution describes how all living forms cope with challenges in their environment, as they struggle to persevere against formidable odds. Mutation and selective pressure—cornerstones of Darwin's theory—are the means ...

Researchers use a molecular Trojan horse to deliver chemotherapeutic drug to cancer cells

February 23, 2018
A research team at the University of California, Riverside has discovered a way for chemotherapy drug paclitaxel to target migrating, or circulating, cancer cells, which are responsible for the development of tumor metastases.

Lab-grown 'mini tumours' could personalise cancer treatment

February 23, 2018
Testing cancer drugs on miniature replicas of a patient's tumour could help doctors tailor treatment, according to new research.

An under-the-radar immune cell shows potential in fight against cancer

February 23, 2018
One of the rarest of immune cells, unknown to scientists a decade ago, might prove to be a potent weapon in stopping cancer from spreading in the body, according to new research from the University of British Columbia.

Putting black skin cancer to sleep—for good

February 22, 2018
An international research team has succeeded in stopping the growth of malignant melanoma by reactivating a protective mechanism that prevents tumor cells from dividing. The team used chemical agents to block the enzymes ...

Cancer risk associated with key epigenetic changes occurring through normal aging process

February 22, 2018
Some scientists have hypothesized that tumor-promoting changes in cells during cancer development—particularly an epigenetic change involving DNA methylation—arise from rogue cells escaping a natural cell deterioration ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.