Study finds new mechanism to control information flow in the brain

March 2, 2017
Different Sst interneurons, or type of nerve cell (colored red), in the outer shell, or cerebral cortex, of the mouse brain are shown. Credit: New York University School of Medicine/AAAS

Specialized nerve cells, known as somatostatin-expressing (Sst) interneurons, in the outer part of the mammalian brain (or cerebral cortex)—play a key role in controlling how information flows in the brain when it is awake and alert. This is the finding of a study published online in Science March 2 by a team of neuroscientists at NYU Langone Medical Center and its Neuroscience Institute.

In experiments in mice, the researchers found that the activity of Sst interneurons changes when the animal goes from not moving its whiskers (in a resting state) to moving them (in an active state), a process known as whisking.

Specifically, the team discovered that the cortex contains a diverse set of Sst interneuron subtypes that reach into different layers of the cortex. Some of the subtypes turn on while others turn off during whisking. The Sst interneurons then either selectively block or encourage the flow of information in ways that the researchers believe helps the animals make informed decisions and guide their movements.

"We have long wondered how the can process and integrate separate information lines coming in from different brain structures, or from other areas of the cortex, and how it sorts out what information is relevant at any given moment," says senior study investigator Bernardo Rudy, MD, PhD. "We now know that Sst interneurons operate like a switchboard that controls the flow of these information lines," adds Rudy, a professor of neuroscience and physiology at NYU Langone.

According to Rudy, who is also the Valentino D.B. Mazzia, MD, JD, Professor of Anesthesiology in the Department of Anesthesiology, Perioperative Care, and Pain Medicine, neurons in the cortex are known to play a key role in sensory perception, memory formation, and learning. But the new study, he says, is the first to show the "switchboard" role played by Sst interneurons in the cortex.

The video will load shortly
A mouse uses its whiskers (or whisking) to sense its surroundings. Credit: Jakob Voigts at MIT.

Because the mouse and human brains have much in common, co-lead study investigator William Muñoz, an MD-PhD student at NYU Langone, says the team's findings advance the field's understanding of how the brain processes touch, smell, hearing, sight, and taste. The results, adds Muñoz, may also speed the search for drug therapies for conditions where the senses are disrupted, including Alzheimer's, schizophrenia, and autism.

Researchers say that with its combination of active and passive brain states, the mouse's reliance on "whisking" to navigate and interpret its environment makes it an "ideal model" to study nerve cell activity during these changing brain processing modes. They point out that the whiskers in the mouse snout are its most important sensory organ, adding that mice and rats are nocturnal animals and use whisker touches to sense their surroundings and decide their movements in the dark.

Researchers say the discovery of a "family" of Sst interneurons with different patterns of activity during behavior was made possible due to the recent development of a technique that chemically tags individual neurons with a light-activating substance. The tagging method, known as channelrhodopsin-assisted patching, was developed by Muñoz and Robin Tremblay, PhD, a co-lead investigator of the study.

This technique, they say, along with a probe inserted into the mouse brain, allowed them to efficiently identify and record the activity of Sst interneurons, which are rare and are intermingled with other types of neurons.

Researchers next have plans to analyze the activities of Sst interneurons and other kinds of neurons in the cerebral cortex using their innovative method during more complex behaviors to figure out their role in the processing of sensory information in the .

Explore further: Deciphering the emergence of neuronal diversity

More information: "Layer-specific modulation of neocortical dendritic inhibition during active wakefulness," Science, science.sciencemag.org/cgi/doi … 1126/science.aag2599

Related Stories

Deciphering the emergence of neuronal diversity

January 30, 2017
The development of the cerebral cortex played a major role in the evolution of mankind. Scientists are now studying the emergence of its cellular microstructure with high resolution methods. Neuroscientists at the University ...

Interneurons find their way to the striatum

June 10, 2015
Researchers from the MRC Centre for Developmental Neurobiology (MRC CDN) at King´s College London, led by Prof. Oscar Marín, have identified the mechanisms guiding interneurons to the striatum, a major brain centre involved ...

Protein identified that can disrupt embryonic brain development and neuron migration

January 14, 2013
Interneurons – nerve cells that function as 'dimmers' – play an important role in the brain. Their formation and migration to the cerebral cortex during the embryonic stage of development is crucial to normal brain functioning. ...

On the ups and downs of the seemingly idle brain

January 20, 2015
Even in its quietest moments, the brain is never "off." Instead, while under anesthesia, during slow-wave sleep, or even amid calm wakefulness, the brain's cortex maintains a cycle of activity and quiet called "up" and "down" ...

Cortex development depends on a protein

October 2, 2012
As outlined in a study published in Developmental Cell, researchers have discovered a novel function for p27 in the control of interneuron migration in the developing cerebral cortex.

Important brain network for processing sensory perceptions elucidated

January 21, 2016
Every day, we constantly absorb information through our sensory organs, which the brain then needs to process correctly. The information initially reaches the main relay center, the thalamus, and then travels to the cerebral ...

Recommended for you

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.