Study finds new mechanism to control information flow in the brain

March 2, 2017, New York University School of Medicine
Different Sst interneurons, or type of nerve cell (colored red), in the outer shell, or cerebral cortex, of the mouse brain are shown. Credit: New York University School of Medicine/AAAS

Specialized nerve cells, known as somatostatin-expressing (Sst) interneurons, in the outer part of the mammalian brain (or cerebral cortex)—play a key role in controlling how information flows in the brain when it is awake and alert. This is the finding of a study published online in Science March 2 by a team of neuroscientists at NYU Langone Medical Center and its Neuroscience Institute.

In experiments in mice, the researchers found that the activity of Sst interneurons changes when the animal goes from not moving its whiskers (in a resting state) to moving them (in an active state), a process known as whisking.

Specifically, the team discovered that the cortex contains a diverse set of Sst interneuron subtypes that reach into different layers of the cortex. Some of the subtypes turn on while others turn off during whisking. The Sst interneurons then either selectively block or encourage the flow of information in ways that the researchers believe helps the animals make informed decisions and guide their movements.

"We have long wondered how the can process and integrate separate information lines coming in from different brain structures, or from other areas of the cortex, and how it sorts out what information is relevant at any given moment," says senior study investigator Bernardo Rudy, MD, PhD. "We now know that Sst interneurons operate like a switchboard that controls the flow of these information lines," adds Rudy, a professor of neuroscience and physiology at NYU Langone.

According to Rudy, who is also the Valentino D.B. Mazzia, MD, JD, Professor of Anesthesiology in the Department of Anesthesiology, Perioperative Care, and Pain Medicine, neurons in the cortex are known to play a key role in sensory perception, memory formation, and learning. But the new study, he says, is the first to show the "switchboard" role played by Sst interneurons in the cortex.

A mouse uses its whiskers (or whisking) to sense its surroundings. Credit: Jakob Voigts at MIT.

Because the mouse and human brains have much in common, co-lead study investigator William Muñoz, an MD-PhD student at NYU Langone, says the team's findings advance the field's understanding of how the brain processes touch, smell, hearing, sight, and taste. The results, adds Muñoz, may also speed the search for drug therapies for conditions where the senses are disrupted, including Alzheimer's, schizophrenia, and autism.

Researchers say that with its combination of active and passive brain states, the mouse's reliance on "whisking" to navigate and interpret its environment makes it an "ideal model" to study nerve cell activity during these changing brain processing modes. They point out that the whiskers in the mouse snout are its most important sensory organ, adding that mice and rats are nocturnal animals and use whisker touches to sense their surroundings and decide their movements in the dark.

Researchers say the discovery of a "family" of Sst interneurons with different patterns of activity during behavior was made possible due to the recent development of a technique that chemically tags individual neurons with a light-activating substance. The tagging method, known as channelrhodopsin-assisted patching, was developed by Muñoz and Robin Tremblay, PhD, a co-lead investigator of the study.

This technique, they say, along with a probe inserted into the mouse brain, allowed them to efficiently identify and record the activity of Sst interneurons, which are rare and are intermingled with other types of neurons.

Researchers next have plans to analyze the activities of Sst interneurons and other kinds of neurons in the cerebral cortex using their innovative method during more complex behaviors to figure out their role in the processing of sensory information in the .

Explore further: Deciphering the emergence of neuronal diversity

More information: "Layer-specific modulation of neocortical dendritic inhibition during active wakefulness," Science, science.sciencemag.org/cgi/doi … 1126/science.aag2599

Related Stories

Deciphering the emergence of neuronal diversity

January 30, 2017
The development of the cerebral cortex played a major role in the evolution of mankind. Scientists are now studying the emergence of its cellular microstructure with high resolution methods. Neuroscientists at the University ...

Interneurons find their way to the striatum

June 10, 2015
Researchers from the MRC Centre for Developmental Neurobiology (MRC CDN) at King´s College London, led by Prof. Oscar Marín, have identified the mechanisms guiding interneurons to the striatum, a major brain centre involved ...

Protein identified that can disrupt embryonic brain development and neuron migration

January 14, 2013
Interneurons – nerve cells that function as 'dimmers' – play an important role in the brain. Their formation and migration to the cerebral cortex during the embryonic stage of development is crucial to normal brain functioning. ...

On the ups and downs of the seemingly idle brain

January 20, 2015
Even in its quietest moments, the brain is never "off." Instead, while under anesthesia, during slow-wave sleep, or even amid calm wakefulness, the brain's cortex maintains a cycle of activity and quiet called "up" and "down" ...

Cortex development depends on a protein

October 2, 2012
As outlined in a study published in Developmental Cell, researchers have discovered a novel function for p27 in the control of interneuron migration in the developing cerebral cortex.

Important brain network for processing sensory perceptions elucidated

January 21, 2016
Every day, we constantly absorb information through our sensory organs, which the brain then needs to process correctly. The information initially reaches the main relay center, the thalamus, and then travels to the cerebral ...

Recommended for you

Doctors fail to flag concussion patients for critical follow-up

May 25, 2018
As evidence builds of more long-term effects linked to concussion, a nationwide study led by scientists at UCSF and the University of Southern California has found that more than half of the patients seen at top-level trauma ...

New parts of the brain become active after students learn physics

May 24, 2018
Parts of the brain not traditionally associated with learning science become active when people are confronted with solving physics problems, a new study shows.

Study suggests brainwave link between disparate disorders

May 24, 2018
A brainwave abnormality could be a common link between Parkinson's disease, neuropathic pain, tinnitus and depression—a link that authors of a new study suggest could lead to treatment for all four conditions.

Bursts of brain activity linked to memory reactivation

May 24, 2018
Leading theories propose that sleep presents an opportune time for important, new memories to become stabilized. And it's long been known which brain waves are produced during sleep. But in a new study, researchers set out ...

Researchers define molecular basis to explain link between a pregnant mother's nutrition and infant growth

May 24, 2018
For years, pregnant mothers have questioned their nutritional habits: "Will eating more cause my baby to be overweight?" Or, "I'm eating for two, so it won't hurt to have an extra serving, right?"

Leg exercise is critical to brain and nervous system health

May 23, 2018
Groundbreaking research shows that neurological health depends as much on signals sent by the body's large, leg muscles to the brain as it does on directives from the brain to the muscles. Published today in Frontiers in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.