How sleep deprivation affects memory-making in the brain

April 7, 2017 by Morgan Sherburne
Credit: University of Michigan

Scientists have known that a lack of sleep can interfere with the ability to learn and make memories. Now, a group of University of Michigan researchers have found how sleep deprivation affects memory-making in the brain.

Previously, researchers knew that depriving mice of sleep after the mice performed a task resulted in the mice forgetting aspects of that task. But researchers weren't sure what function of the hippocampus—two seahorse-shaped structures located in the temporal lobe of the brain where many long-term memories are made—was kept from doing its job.

Now, U-M researchers have found that interfering with sleep-associated oscillations—or the rhythmic firing of neurons—in one subsection of the hippocampus is likely the culprit. Their results are published in Nature Communications.

To test the role of oscillations in , the researchers, led by graduate student Nicolette Ognjanovski, recorded the baseline hippocampal activity of a group of mice. They placed mice into a new environment, let them explore, gave them a mild foot shock, then put them back into their home cages to rest and sleep normally.

"If you return the mouse to that same structure a day or even a couple months later, they will have this very stereotyped fear response, which is that they freeze," said Sara Aton, an assistant professor in the Department of Molecular, Cellular and Developmental Biology and senior author of the paper. "But if you sleep-deprive an animal for a few hours after that context-shock pairing, the mouse won't remember it the next day."

The researchers found that in normally sleeping mice, sleep-associated oscillations in a subsection of the hippocampus called CA1 were more robust after learning. They then took a new group of mice, recorded their baseline hippocampal activity and had them complete the same task. The researchers also gave these mice a drug to inhibit a small population of inhibitory neurons in CA1 that express parvalbumin.

The researchers didn't change the sleep behavior of the animal—they slept normally. But turning off the activity of parvalbumin-expressing neurons disrupted the rhythmic firing of surrounding CA1 neurons while those animals were asleep. Suppressing the parvalbumin-expressing cells appeared to completely wipe out the normal learning-associated increase in oscillations in that section of the mouse's hippocampus.

"There's an old theorem called Hebb's Law, which is, 'Fire together, wire together,'" Aton said. "If you can get two neurons to fire with great regularity in close proximity to each other, it's very likely you're going to affect the strength of connections between them."

When the neurons were kept from firing together regularly and rhythmically, the mice forgot there was any fearful association with their task.

"The dominant oscillatory activity, which is so critical for learning, is controlled by a very small number of the total cell population in the hippocampus," said Ognjanovski, also a first author of the study. "This changes the narrative of what we understand about how networks work. The oscillations that parvalbumin cells control are linked to global network changes, or stability. Memories aren't stored in single cells, but distributed through the network."

The researchers also compared the stability of the neurons' connections between the control group and the group whose sleep oscillations were disrupted. They found that not only were the connections stronger in the control group after their learning trial, but that those neuronal connections were also stronger. These changes were blocked when sleep-associated hippocampal oscillations were experimentally disrupted.

"It seems like this population of that is generating rhythms in the brain during sleep is providing some informational content for reinforcing memories," Aton said. "The rhythm itself seems to be the most critical part, and possibly why you need to have sleep in order to form these memories."

Next, the researchers plan to test whether restoring hippocampal oscillations (mimicking the effects of sleep in CA1) is sufficient for promoting normal formation when are sleep-deprived.

Explore further: Mice offer a window into sleep's role in memory

More information: Nicolette Ognjanovski et al. Parvalbumin-expressing interneurons coordinate hippocampal network dynamics required for memory consolidation, Nature Communications (2017). DOI: 10.1038/ncomms15039

Related Stories

Mice offer a window into sleep's role in memory

March 24, 2017
Sleep provides essential support for learning and memory, but scientists do not fully understand how that process works on a molecular level. What happens to synapses, the connections between neurons, during sleep that helps ...

How sleep deprivation harms memory

August 23, 2016
Researchers from the Universities of Groningen (Netherlands) and Pennsylvania have discovered a piece in the puzzle of how sleep deprivation negatively affects memory.

How the brain consolidates memory during deep sleep

April 14, 2016
Research strongly suggests that sleep, which constitutes about a third of our lives, is crucial for learning and forming long-term memories. But exactly how such memory is formed is not well understood and remains, despite ...

Mouse study shows REM sleep selectively prunes and maintains new synapses

January 27, 2017
(Medical Xpress)—A small team of researchers with affiliations to the New York University School of Medicine and Peking University has found evidence of pruning and maintenance of synapses during REM sleep. In their paper ...

The brain clock that keeps memories ticking

May 30, 2016
Just as members of an orchestra need a conductor to stay on tempo, neurons in the brain need well-timed waves of activity to organize memories across time. In the hippocampus—the brain's memory center—temporal ordering ...

Sleep deprivation handicaps the brain's ability to form new memories, study in mice shows

February 2, 2017
Studying mice, scientists at Johns Hopkins have fortified evidence that a key purpose of sleep is to recalibrate the brain cells responsible for learning and memory so the animals can "solidify" lessons learned and use them ...

Recommended for you

How a seahorse-shaped brain structure may help us recognize others

December 8, 2017
How do we recognize others? How do we know friend from foe, threat from reward? How does the brain compute the multitude of cues telling us that Susan is not Erica even though they look alike? The complexity of social interactions—human ...

Brain networks that help babies learn to walk ID'd

December 8, 2017
Scientists have identified brain networks involved in a baby's learning to walk—a discovery that eventually may help predict whether infants are at risk for autism.

Why we can't always stop what we've started

December 7, 2017
When we try to stop a body movement at the last second, perhaps to keep ourselves from stepping on what we just realized was ice, we can't always do it—and Johns Hopkins University neuroscientists have figured out why.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

Researchers launch atlas of developing human brain

December 7, 2017
The human brain has been called the most complex object in the cosmos, with 86 billion intricately interconnected neurons and an equivalent number of supportive glial cells. One of science's greatest mysteries is how an organ ...

How we learn: Mastering the features around you rather than learning about individual objects

December 7, 2017
A Dartmouth-led study on how we learn finds that humans tend to rely on learning about the features of an object, rather than on the individual object itself.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

katesisco
1 / 5 (1) Apr 07, 2017
I think we're looking at symptoms and not the condition that causes it. I think low levels of carbon dioxide --persistent low levels like a winter heating season inside--are responsible. And now the entire outside world is contaminated by cars producing CO than morphs into CO2.
Ever wonder why so many of our genes are turned off by epigenes? Maybe because of persistant unalterable CO2 levels.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.