Genetics of first-cousin marriage families show how some are protected from heart disease

April 12, 2017
A depiction of the double helical structure of DNA. Its four coding units (A, T, C, G) are color-coded in pink, orange, purple and yellow. Credit: NHGRI

More than 1,800 individuals carrying loss-of-function mutations in both copies of their genes, so-called "human knockouts," are described in the first major study to be published in Nature this week by an international collaboration led by the Perelman School of Medicine at the University of Pennsylvania and colleagues. The program, which has so far sequenced the protein-coding regions of over 10,500 adults living in Pakistan, is illuminating the basic biology and possible therapeutics for several different disorders.

The team has identified more than 1,300 completely knocked out in at least one individual. They first turned their attention for deeper analysis to genes involved in cardiovascular and metabolic diseases. One gene in particular, APOC3, which regulates the metabolism of triglyceride-rich lipoproteins in the blood, was missing in several dozen individuals in a small fishing village on the coast of Pakistan where first-cousin marriages are culturally prevalent. These APOC3-knockout individuals had very low triglyceride levels. The researchers challenged their system with a high-fat meal. Compared with family members who were not APOC3 knockouts, the APOC3 knockout family members did not have the usual post-meal rise in plasma triglycerides.

"These are the world's first APOC3 human knockouts that have been identified," said co-first author and the principal investigator of the study, Danish Saleheen, MD, PhD, an assistant professor of Epidemiology and Biostatistics at Penn. "Their genetic makeup has provided unique insights about the biology of APOC3, which may further help in validating APOC3 inhibition as a therapeutic target for cardiometabolic diseases - the leading cause of death globally.

In addition to Penn, the team includes scientists from the Center for Non-Communicable Diseases (CNCD) in Karachi, Pakistan, the Broad Institute of MIT and Harvard, and the University of Cambridge, UK.

Saleheen has been working for over a decade in Pakistan, in collaboration with the CNCD to collect blood samples from all over his country. This Pakistan-based study already includes more than 70,000 participants and the recruitment is rapidly being expanded to include 200,000 people. "We are continuing protein-coding region sequencing studies in the Pakistani population. If we are able to sequence 200,000 participants, we will be able to identify human knockouts for more than 8,000 unique genes." Saleheen said. "These observations provide us with a roadmap, a systematic way to understand the physiological consequences of complete disruption of genes in humans," Saleheen said.

"The Human Genome Project gave us a 'parts' list of 18,000 genes. We are now trying to understand gene function by studying people who naturally lack a 'part,'" said co-senior author Sekar Kathiresan, Director of the Center for Genomic Medicine at Massachusetts General Hospital. "We think that over the next ten to twenty years, with a concerted, systematic effort, it's possible to find humans who naturally lack any one of several thousand genes in the genome and understand what the phenotypic consequences are."

"The project highlights the value of looking at diverse populations, particularly for genetic analyses—you'll find variants in one ethnicity and not another," said co-first author Pradeep Natarajan, an associate scientist at Broad Institute and a postdoctoral research fellow in Kathiresan's lab.

Co-senior author Daniel J. Rader, MD, chair of Genetics at Penn, hopes that future dives into this rich dataset will bring even more novel insights into human biology and point toward new therapeutic targets for treating and preventing disease. "Linking DNA sequencing with deep phenotyping at scale in this population will be an incredible source of new knowledge about how gene alterations influence human health and disease," Rader said. In addition to a continued focus on the biology of heart attacks, type 2 diabetes, and stroke, the team will also be looking for clues for early-onset Parkinson's disease, autism, congenital blindness, and mental retardation, among many other conditions.

Penn scientists are now collaborating with CNCD researchers to conduct deep phenotyping studies in all human knockouts the project identifies. These studies will include detailed physiological and mechanistic studies to understand the biological and pharmacological consequences of both partial and complete disruption of genes in humans.

Explore further: Study reveals the effect of genetic 'knockouts' on human health

More information: Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity, Nature (2017). nature.com/articles/doi:10.1038/nature22034

Related Stories

Study reveals the effect of genetic 'knockouts' on human health

March 8, 2016
The study, published in Science, found that individuals with certain inactive genes, or 'knockouts', did not have any related adverse health effects.

Broken gene found to protect against heart disease

June 18, 2014
By scouring the DNA of thousands of patients, researchers at the Broad Institute, Massachusetts General Hospital, and their colleagues have discovered four rare gene mutations that not only lower the levels of triglycerides, ...

Human genome sequences linked to health data will change clinical medicine

December 22, 2016
The value of intersecting the sequencing of individuals' exomes (all expressed genes) or full genomes to find rare genetic variants—on a large scale—with their detailed electronic health record (EHR) information has "myriad ...

Discovery could help doctors to spot cardiovascular disease at an earlier stage

February 21, 2017
Screening methods for cardiovascular diseases such as heart attacks and strokes could be improved by measuring different biological signposts to those currently being tested, a new study led by researchers from King's College ...

Rare gene mutations raise risk of early heart attack

December 10, 2014
A team of investigators from the Broad Institute, Massachusetts General Hospital and other leading biomedical research institutions has pinpointed rare mutations in a gene called APOA5 that increase a person's risk of having ...

OTUD6B gene mutations cause intellectual and physical disability

March 23, 2017
An international team of researchers from institutions around the world, including Baylor College of Medicine, has discovered that mutations of the OTUD6B gene result in a spectrum of physical and intellectual deficits. This ...

Recommended for you

Study reveals an ancient Achilles heel in the human genome

September 21, 2017
In a major study published today, researchers at deCODE genetics use whole-genome data from 14,000 people from across the population of Iceland, including 1500 sets of parents and children, to provide the most detailed portrait ...

Forgotten strands of DNA initiate the development of immune cells

September 21, 2017
Intricate human physiological features such as the immune system require exquisite formation and timing to develop properly. Genetic elements must be activated at just the right moment, across vast distances of genomic space.

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

Scientists identify key regulator of male fertility

September 19, 2017
When it comes to male reproductive fertility, timing is everything. Now scientists are finding new details on how disruption of this timing may contribute to male infertility or congenital illness.

New assay leads to step toward gene therapy for deaf patients

September 18, 2017
Scientists at Oregon State University have taken an important step toward gene therapy for deaf patients by developing a way to better study a large protein essential for hearing and finding a truncated version of it.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.