Medical mystery solved in record time

April 17, 2017
Dr. Daryl A. Scott is an associate professor ofMolecular and Human GeneticsBaylor College of Medicine. Credit: Baylor College of Medicine

In a study published today in PLoS ONE, a team of researchers reports solving a medical mystery in a day's work. In record-time detective work, the scientists narrowed down the genetic cause of intellectual disability in four male patients to a deletion of a small section of the X chromosome that had not been previously linked to a medical condition.

Even with the current technological advances, solving medical mysteries such as this one usually entails a much longer period of research. "We found it very interesting how fast we went from knowing nothing about the of one patient's condition, to discovering the cause and finding three more individuals with the same problems," said senior author Dr. Daryl A. Scott, associate professor of molecular and at Baylor College of Medicine. "It took us a year to get all the documentation for writing and publishing the report, but the actual discovery was within hours. It was essential to our discovery that we had at our disposal technology to find and search genomic databases, and to connect electronically and exchange information with other researchers around the world."

Modern day medical detective work

It all began on a Thursday, Scott's day to visit patients with developmental disabilities in clinic. "For one of the patients, a young male with intellectual disability, , macrocephaly (enlarged head) and very flexible joints, our genetics lab indicated that the patient did not seem to have any known genetic changes that could explain his condition," said Scott. "I saw a relatively small deletion in the X chromosome, identified as Xp11.22; it had only a few genes in it. The lab indicated that there had been no previous reports about this particular part of the genome causing any kind of medical problems."

Two of the genes in the delete section of the patient's X chromosome were MAGED1 and GSPT2. "To have an idea of what these genes might do, I searched a database that describes the functions of genes in the mouse and found that mice that have a deletion of the Maged1 gene have neurocognitive behavioral abnormalities. This caught my interest as it related to my patient's condition."

To make his case that deletions in Xp11.22 caused the clinical features of his patient, Scott needed to find more patients presenting similar clinical conditions and deletions. He searched two large genomic databases looking for more patients.

After searching the DECIPHER database, Scott found one patient carrying almost the exact same deletion as his patient, but there was no information about the individual's clinical problems. Scott immediately sent an electronic message to the physician, co-author Dr. Alex Henderson, at The Newcastle upon Tyne Hospitals in England, in order learn more about the clinical characteristics of his patient.

Then, Scott contacted co-author Dr. Seema Lalani, associate professor of molecular and human Genetics at Baylor and assistant laboratory director of cytogenetics at Baylor Genetics. Lalani searched the Baylor Genetics database of 60,000 cases for patients with the deletion.

After carrying on this detective electronic work, Scott went to see his patient. By early afternoon, he was back in his office checking his email. He found a message from Henderson. He had two (siblings) with the deletion, and , developmental delay and super mobile joints! Shortly after, Lalani informed Scott that co-author Dr. Patricia Evans, professor of pediatrics, neurology and neurotherapeutics at the University of Texas Southwestern Medical School in Dallas had a patient with the Xp11.22 deletion and the same clinical features as Scott's patient.

"In a day's work we identified four patients in two continents, involving 3 families and it was all put together within 8 hours," Scott said. "None of the and their families had an explanation for the condition before this work. Our findings allowed us to provide them with a genetic diagnosis."

"In every case the mothers are carriers for these deletions but they do not have any apparent symptoms," said Scott. "Yet, they can have male children that have significant problems. With this information, we can say to the parents that they have a 50 percent chance of passing this X chromosome with the deletion to a male child. Female children have a 50 percent chance of being carriers. This represents a significant change for the parents; they can now make informed decisions about future family planning."

Explore further: RERE gene mutations result in features similar to 1p36 deletion syndrome

More information: Christina Grau et al, Xp11.22 deletions encompassing CENPVL1, CENPVL2, MAGED1 and GSPT2 as a cause of syndromic X-linked intellectual disability, PLOS ONE (2017). DOI: 10.1371/journal.pone.0175962

Related Stories

RERE gene mutations result in features similar to 1p36 deletion syndrome

April 14, 2016
One in 5,000 babies is born missing a small amount of genetic material from the tip of chromosome 1, a region called 1p36. Missing genes in the 1p36 region is a relatively common cause of intellectual disability. These children ...

Gene ABL1 implicated in both cancer and a developmental disorder

March 14, 2017
ABL1, a human gene well-known for its association with cancer now has been linked to a developmental disorder. The study, which was carried out by a team of researchers from institutions around the world, including Baylor ...

OTUD6B gene mutations cause intellectual and physical disability

March 23, 2017
An international team of researchers from institutions around the world, including Baylor College of Medicine, has discovered that mutations of the OTUD6B gene result in a spectrum of physical and intellectual deficits. This ...

Scientists can now better diagnose diseases with multiple genetic causes

December 8, 2016
Scientists at Baylor College of Medicine, Baylor Genetics, the University of Texas Health Science Center at Houston and Texas Children's Hospital are combining descriptions of patients' clinical features with their complex ...

Mutations in CWC27 result in a spectrum of developmental conditions

March 10, 2017
An international team of researchers has discovered that mutations in the human gene CWC27 result in a spectrum of clinical conditions that include retinal degeneration and problems with craniofacial and skeletal development. ...

New syndrome causing obesity and intellectual disability identified

February 3, 2016
Scientists at The University of Manchester have discovered a rare new genetic syndrome of obesity, over-eating, mental and behavioural problems in six families, from across the world.

Recommended for you

Association found between abnormal cerebral connectivity and variability in the PPARG gene in developing preterm infants

December 12, 2017
(Medical Xpress)—A team of researchers with King's College London and the National Institute for Health Research Biomedical Research Centre, both in the U.K., has found what they describe as a strong association between ...

Large genetic study links tendency to undervalue future rewards with ADHD, obesity

December 11, 2017
Researchers at University of California San Diego School of Medicine have found a genetic signature for delay discounting—the tendency to undervalue future rewards—that overlaps with attention-deficit/hyperactivity disorder ...

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.