Scientists identify new way of attacking breast cancer

April 18, 2017, University of Manchester
Credit: University of Manchester

Scientists have discovered a brand new way of attacking breast cancer that could lead to a new generation of drugs.

Researchers have revealed a new driver for the growth and spread of cells and have designed a novel type of to block it.

The next step will be to select the most effective drug from this new class of inhibitors and take it into clinical trials of patients.

A team at The Institute of Cancer Research, London working with a team at the Cancer Research UK Manchester Institute at The University of Manchester discovered that a protein called lysyl oxidase, or LOX, plays an important role in driving growth and cancer spread (metastasis).

The researchers found, in mice, that LOX seemed to help breast 'trap' growth receptors on their surface as a means of growing more quickly.

Crucially, the team also designed and validated a prototype drug, called CCT365623, which blocks this function, and is able to slow tumour growth and metastases in mice.

The study is published in Nature Communications today (Tuesday) and was funded by Wellcome, Cancer Research UK, and The Institute of Cancer Research (ICR).

Previously, LOX had been known for its ability to help control formation of the extracellular matrix that holds tissues together, and its use by cancer cells to travel more easily around the body.

But this major new study reveals for the first time how LOX is able to control tumour growth. The team discovered that the strongest effect of LOX depletion in was a reduction in the surface levels of epidermal growth factor receptor (EGFR), a receptor which is often responsible for promoting cancer growth.

Scientists worked with mice that spontaneously develop breast cancer and demonstrated that they could reduce both the tumour volume and the size and number of metastases when they genetically removed the LOX gene. All the mice that had the LOX gene genetically removed from their cancer cells survived more than 50 days.

The teams also created CCT365623, a new inhibitor of LOX. In mice that had developed breast cancer, the drug slowed and reduced cancer spread with no side-effects.

LOX has also been shown to be involved in bowel, prostate, pancreatic and lung cancer, so treatments targeting it could potentially benefit a wide range of patients.

Professor Caroline Springer, joint senior author and Team Leader of Gene and Oncogene Targeting at The Institute of Cancer Research, London, said:

"We knew that LOX had a role in cancer's spread round the body, but to discover how it also appears to drive the growth of breast cancer cells is a real game changer. It means that drugs that disrupt LOX's ability to promote growth signals might be able to slow or block cancer progression in patients – as we saw in mice."

Professor Richard Marais, joint senior author and Director of the Cancer Research UK Manchester Institute at The University of Manchester, said:

"In this study we show how improving our knowledge of cancer biology can spearhead the development of new drugs. By understanding better how LOX works, we will make new precision drugs that could improve the survival of patients with many different types of cancer."

Dr Justine Alford, senior science information officer at Cancer Research UK, said:

"This research in mice is exciting because it not only reveals new details of how breast cancer grows and spreads, but it could lead to a completely new way to stop these processes in patients if proven in people. This could help improve outcomes for patients, since cancer that has spread is harder to treat. LOX is also thought to play a role in a number of other cancers, so this research could also have applications beyond breast cancer."

Explore further: Looking beyond cancer cells to understand what makes breast cancer spread

More information: HaoRan Tang et al. Lysyl oxidase drives tumour progression by trapping EGF receptors at the cell surface, Nature Communications (2017). DOI: 10.1038/ncomms14909

Related Stories

Looking beyond cancer cells to understand what makes breast cancer spread

February 16, 2017
To understand what makes breast cancer spread, researchers are looking at where it lives - not just its original home in the breast but its new home where it settles in other organs. What's happening in that metastatic niche ...

Gene test could pinpoint patients sensitive to new type of cancer drug

December 22, 2016
Testing for a gene commonly mutated in ovarian cancers could pick out patients who will respond well to a promising new class of cancer drugs, a major new study reveals.

Scientists discover how breast cancer cells spread from blood vessels

February 9, 2016
Researchers have identified a protein that controls how breast cancer cells spread around the body, according to a Cancer Research UK-funded study published in Science Signaling today (Tuesday).

Immune system plays dual role in breast cancer

February 8, 2017
The immune system plays a paradoxical role in the spread of breast cancer. Some immune cells contribute to metastasis, while other cells can be activated to strengthen the effect of chemotherapy. Kelly Kersten made this discovery ...

Researchers identify new potential treatment for cancer metastasis

January 9, 2017
Breast cancer metastasis, the process by which cancer spreads, may be prevented through the new use of a class of drugs already approved by the U.S. Food and Drug Administration.

Research finds target to prevent breast cancer relapse

April 23, 2015
Researchers have for the first time shown how a specific protein receptor on the surface of breast cells promotes the progression of breast cancer.

Recommended for you

Researchers discover novel mechanism linking changes in mitochondria to cancer cell death

February 20, 2018
To stop the spread of cancer, cancer cells must die. Unfortunately, many types of cancer cells seem to use innate mechanisms that block cancer cell death, therefore allowing the cancer to metastasize. While seeking to further ...

Stem cell vaccine immunizes lab mice against multiple cancers

February 15, 2018
Stanford University researchers report that injecting mice with inactivated induced pluripotent stem cells (iPSCs) launched a strong immune response against breast, lung, and skin cancers. The vaccine also prevented relapses ...

Induced pluripotent stem cells could serve as cancer vaccine, researchers say

February 15, 2018
Induced pluripotent stem cells, or iPS cells, are a keystone of regenerative medicine. Outside the body, they can be coaxed to become many different types of cells and tissues that can help repair damage due to trauma or ...

Team paves the way to the use of immunotherapy to treat aggressive colon tumors

February 15, 2018
In a short space of time, immunotherapy against cancer cells has become a powerful approach to treat cancers such as melanoma and lung cancer. However, to date, most colon tumours appeared to be unresponsive to this kind ...

Can our genes help predict how women respond to ovarian cancer treatment?

February 15, 2018
Research has identified gene variants that play a significant role in how women with ovarian cancer process chemotherapy.

First comparison of common breast cancer tests finds varied accuracy of predictions

February 15, 2018
Commercially-available prognostic breast cancer tests show significant variation in their abilities to predict disease recurrence, according to a study led by Queen Mary University of London of nearly 800 postmenopausal women.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Sunshine29
not rated yet Apr 18, 2017
VuVa Magnetic Dilators are a safe alternative that helps with painful intercourse after breast cancer treatment.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.