Suppressing single protein greatly extends life span of mice with form of ALS

April 13, 2017 by Jennie Dusheck
Suppressing single protein greatly extends life span of mice with form of ALS
Aaron Gitler and his colleagues found that suppressing a protein in mice with a form of ALS allowed them to live longer and improved their motor function. Credit: Paul Sakuma

A study led by researchers at Stanford University School of Medicine has revealed a possible new therapeutic approach for amyotrophic lateral sclerosis, a progressive neurodegenerative disease.

The Stanford-led team performed a series of experiments showing that suppressing a certain in a mouse model of ALS, or Lou Gehrig's disease, could markedly extend the animal's life span. In one experiment, none of the untreated lived longer than 29 days, while some of the treated mice lived over 400 days.

A paper describing the work was published online April 12 in Nature. The paper—by senior author Aaron Gitler, PhD, associate professor of genetics, and lead author Lindsay Becker, a graduate student—details a series of experiments that together suggest a possible strategy for treating ALS.

Finding a different approach

ALS is a disease in which the nerve cells in the brain and spinal cord degenerate, leading to wasting of the muscles. Patients gradually lose the ability to move, speak, eat or breathe, often leading to paralysis and death within two to five years. It is associated with environmental risk factors, such as old age and military service. In addition, mutations in certain genes can cause ALS. Exactly how ALS works is still poorly understood, but knowing which genes are involved can point researchers toward processes inside cells that would be good targets for drugs.

One indicator of ALS, as well as other neurodegenerative diseases, is clumps of protein in the brain. In ALS, these clumps, or aggregates, are made up of a protein called TDP-43. Eliminating TDP-43, and therefore the TDP-43 aggregates, might seem like a good way to prevent or cure ALS. But cells need TDP-43 to survive, so suppressing TDP-43 itself is not a good idea.

A different approach was needed. The researchers knew that a second protein, ataxin 2, helped cells survive when TDP-43 formed toxic clumps. Unlike TDP-43, ataxin 2 is not essential for a cell's survival, making it a reasonable therapeutic target, Gitler said.

In a previous study, the Stanford-led team had shown that when ataxin 2 is suppressed or blocked in yeast cultures and fruit flies that carry the human TDP-43 gene, cells are more resistant to the potential toxic effects of the clumping TDP-43 protein.

In still another study, Gitler and his colleagues had shown that versions of the human ataxin 2 gene that resulted in a more stable ataxin 2 protein—and therefore more of the protein—increased the risk for developing ALS. The researchers reasoned that if mutations that increased the amount of ataxin 2 raised the risk of ALS, maybe lowering the amount of ataxin 2 would protect a person from ALS.

Becker used genetically engineered mice whose neurons produced human TDP-43 protein at high levels. These mice exhibit some features that resemble human ALS, including a buildup of clumps of TDP-43 in their neurons. These mice also have difficulty walking and typically have life spans of no more than 30 days.

"We wanted to find out if we could protect these mice from the consequences of TDP-43 by lowering the amount of ataxin 2," said Gitler. Becker genetically engineered these ALS mice to have half the normal amount of ataxin 2, and also engineered other mice to completely lack the protein. She found that with half the ataxin 2, the ALS-like mice survived much longer. "But what was really astounding," said Becker, "was that when we completely removed ataxin 2, there was really an unprecedented survival; some of the mice lived hundreds and hundreds of days."

A preventive that worked in mice

Gitler's team next tried something that could have a more direct therapeutic value: treating mice with a type of DNA-like drug, designed to block the production of ataxin 2. These so called "antisense oligonucleotides" are strands of synthetic DNA that target a gene and block the expression of the protein that it encodes. Delivery of the antisense oligonucleotides to the nervous systems of some of the ALS mice enabled them to maintain their health much longer than the ALS mice treated with a placebo.

A similar antisense oligonucleotide was recently approved for safety trials in pediatric patients with spinal muscular atrophy, and other antisense oligonucleotides have passed safety trials—factors that Gitler said give him hope for a similar strategy for ALS.

Becker said the study showed that suppressing ataxin 2 delayed onset and slowed the progression of the ALS-like disease in mice that were not yet showing symptoms. Whether oligonucleotides or other protein-blocking treatments could reverse symptoms in mice that are already sick is another question. "That's the next set of experiments that we are working on," she said. Because TDP-43 clumping occurs in nearly all ALS cases, targeting ataxin 2 could be a broadly effective therapeutic strategy, she said.

Explore further: Gene silencing shows promise for treating two fatal neurological disorders

More information: Lindsay A. Becker et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice, Nature (2017). DOI: 10.1038/nature22038

Related Stories

Gene silencing shows promise for treating two fatal neurological disorders

April 12, 2017
In two studies of mice, researchers showed that a drug, engineered to combat the gene that causes spinocerebellar ataxia type 2 (SCA2), might also be used to treat amyotrophic lateral sclerosis (ALS). Both studies were published ...

Designer compound may untangle damage leading to some dementias

February 8, 2017
In a study of mice and monkeys, National Institutes of Health funded researchers showed that they could prevent and reverse some of the brain injury caused by the toxic form of a protein called tau. The results, published ...

Drug compound halts Alzheimer's-related damage in mice

January 25, 2017
Under ordinary circumstances, the protein tau contributes to the normal, healthy functioning of brain neurons. In some people, though, it collects into toxic tangles that damage brain cells. Such tangles are a hallmark of ...

Treating Machado Joseph Disease; a new approach to an old problem

December 1, 2015
Machado-Joseph disease (MJD) is a hereditary neurodegenerative disorder that destroys the brain areas involved in muscle control. Although the disease is clearly caused by a mutation in the ATXN3 gene resulting in an abnormal ...

New findings on protein misfolding

September 18, 2012
Misfolded proteins can cause various neurodegenerative diseases such as spinocerebellar ataxias (SCAs) or Huntington's disease, which are characterized by a progressive loss of neurons in the brain. Researchers of the Max ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.