New findings on protein misfolding

September 18, 2012

Misfolded proteins can cause various neurodegenerative diseases such as spinocerebellar ataxias (SCAs) or Huntington's disease, which are characterized by a progressive loss of neurons in the brain. Researchers of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, together with their colleagues of the Université Paris Diderot, Paris, France, have now identified 21 proteins that specifically bind to a protein called ataxin-1. Twelve of these proteins enhance the misfolding of ataxin-1 and thus promote the formation of harmful protein aggregate structures, whereas nine of them prevent the misfolding.

Proteins only function properly when the chains of , from which they are built, fold correctly. Misfolded proteins can be toxic for the cells and assemble into insoluble aggregates together with other proteins. Ataxin-1, the protein that the researchers have now investigated, is very prone to misfolding due to inherited that cause . The reason for this is that the amino acid glutamine is repeated in the of ataxin-1 very often - the more glutamine, the more toxic the protein. Approximately 40 repeats of glutamine are considered to be toxic for the cells.

Now, Dr. Spyros Petrakis, Dr. Miguel Andrade, Professor Erich Wanker and colleagues have identified 21 proteins that mainly interact with ataxin-1 and influence its folding or misfolding. Twelve of these proteins enhance the toxicity of ataxin-1 for the , whereas nine of the identified proteins reduce its toxicity.

Furthermore, the researchers detected a common feature in the structure of those proteins that enhances toxicity and aggregation. It is a special structure scientists call "coiled-coil-domain" because it resembles a double twisted spiral or helix. Apparently this structure promotes aggregation, because proteins that interact with ataxin-1 and have this domain enhance the toxic effect of mutated ataxin-1. As the researchers said, this structure could be a potential target for therapy: "A careful analysis of the molecular details could help to discover drugs that suppress toxic processes."

Explore further: Non-coding RNA has role in inherited neurological disorder -- and maybe other brain diseases too

More information: Identification of Human Proteins That Modify Misfolding and Proteotoxicity of Pathogenic Ataxin-1, PLoS Genetics, doi: 10.1371/journal.pgen.1002897

Related Stories

Non-coding RNA has role in inherited neurological disorder -- and maybe other brain diseases too

June 21, 2011
A team of scientists, led by researchers at the University of California, San Diego School of Medicine, have uncovered a novel mechanism regulating gene expression and transcription linked to Spinocerebellar ataxia 7, an ...

Scientists develop algorithm to understand certain human diseases

June 16, 2011
(Medical Xpress) -- Patricia Clark, the Rev. John Cardinal O’Hara, C.S.C. Associate Professor of Chemistry and Biochemistry at the University of Notre Dame, and Bonnie Berger, professor of applied mathematics at the ...

A natural dye obtained from lichens may combat Alzheimer's disease

December 2, 2011
A red dye derived from lichens that has been used for centuries to color fabrics and food appears to reduce the abundance of small toxic protein aggregates in Alzheimer's disease. The dye, a compound called orcein, and a ...

Recommended for you

Association found between abnormal cerebral connectivity and variability in the PPARG gene in developing preterm infants

December 12, 2017
(Medical Xpress)—A team of researchers with King's College London and the National Institute for Health Research Biomedical Research Centre, both in the U.K., has found what they describe as a strong association between ...

Large genetic study links tendency to undervalue future rewards with ADHD, obesity

December 11, 2017
Researchers at University of California San Diego School of Medicine have found a genetic signature for delay discounting—the tendency to undervalue future rewards—that overlaps with attention-deficit/hyperactivity disorder ...

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.