Axon regeneration in response to nervous system injury

May 4, 2017 by Bryan Goodchild And Megan Bard, University of Massachusetts Medical School

Alexandra Byrne, PhD, assistant professor of neurobiology, is working to identify which genes control how the nervous system responds to injury. Specifically, the Byrne lab at UMMS is working to identify the genes that prevent injured axons from regenerating due to age or cell type.

"The ultimate goal of the lab is to not only understand how the nervous system responds to injury, but to develop future strategies for repairing the injured or diseased nervous system, for example a spinal cord injury or any sort of nervous system disease," Dr. Byrne said.

Byrne established her lab at UMMS in 2016. She worked as a postdoc at Yale University, where she identified and characterized previously unidentified regulators of in the young and aged nervous system, including poly ADP-ribosylation and insulin signaling. At UMMS, the Byrne lab studies the genetics of axon in C. elegans—a transparent roundworm about the size of a grain of sand with a conserved genome and a well-characterized nervous system.

In the lab, researchers use a laser to cut individual fluorescently labeled neurons in the worm. They then manipulate the genome to find out why axon regrowth is inhibited and use those findings to see how they can get injured axons to regrow.

Credit: University of Massachusetts Medical School

"We've found a number of genes that are differentially regulated in two different types of axons," Byrne said. "We found that the ones that remove poly ADP-ribosylation encourage regeneration and the ones that add poly ADP-ribosylation inhibit regeneration. Now we're trying to figure out what's happening downstream; how is it that this pathway is regulating regeneration and which types of neurons is it acting in? Will this rescue regeneration in the older nervous system and what are the mechanisms by which it does that?"

Byrne said it's important to determine these factors in the worm to identify a specific target that can be manipulated to illicit regeneration in the mammalian system.

Explore further: Study overturns seminal research about the developing nervous system

Related Stories

Study overturns seminal research about the developing nervous system

April 20, 2017
New research by scientists at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA overturns a long-standing paradigm about how axons—thread-like projections that connect cells in the ...

Age no obstacle to nerve cell regeneration, researchers find

January 17, 2014
In aging worms at least, it is insulin, not Father Time, that inhibits a motor neuron's ability to repair itself—a finding that suggests declines in nervous system health may not be inevitable.

Molecule shown to repair damaged axons

March 8, 2017
A foray into plant biology led one researcher to discover that a natural molecule can repair axons, the thread-like projections that carry electrical signals between cells. Axonal damage is the major culprit underlying disability ...

Researchers identify protein required to regrow injured nerves in limbs

June 20, 2012
A protein required to regrow injured peripheral nerves has been identified by researchers at Washington University School of Medicine in St. Louis.

Discovery in roundworms may one day help humans with spinal cord injury and paralysis

April 11, 2016
A newly discovered pathway leading to the regeneration of central nervous system (CNS) brain cells (neurons) in a type of roundworm (C. elegans) sheds light on the adult human nervous system's ability to regenerate.

Study identifies specific gene network that promotes nervous system repair

February 19, 2016
Whether or not nerve cells are able to regrow after injury depends on their location in the body. Injured nerve cells in the peripheral nervous system, such as those in the arms and legs, can recover and regrow, at least ...

Recommended for you

Brain activity linked to stress changes chemical codes

April 24, 2018
Five years ago, a team of University of California San Diego neurobiologists published surprising findings describing how rats' brain cells adopted new chemical codes when subjected to significant changes in natural light ...

In Huntington's disease, heart problems reflect broader effects of abnormal protein

April 24, 2018
Researchers investigating a key signaling protein in Huntington's disease describe deleterious effects on heart function, going beyond the disease's devastating neurological impact. By adjusting protein levels affecting an ...

Heading—not collisions—cognitively impairs players

April 24, 2018
Worse cognitive function in soccer players stems mainly from frequent ball heading rather than unintentional head impacts due to collisions, researchers at Albert Einstein College of Medicine have found. The findings suggest ...

Imagined and actual movements are controlled by the brain in the same way

April 24, 2018
A new study from Karolinska Institutet in Sweden shows that imagined movements can change our perception in the same way as real, executed movements do. The research, which is presented in the scientific journal Nature Communications, ...

Scientists develop new method that uses light to manage neuropathic pain in mice

April 24, 2018
For patients with neuropathic pain, a chronic condition affecting 7 to 8 percent of the European population, extreme pain and sensitivity are a daily reality. There is currently no effective treatment. Scientists from EMBL ...

Animal cyborg—behavioral control by activating 'toy craving' circuit

April 24, 2018
Children love to get toys from parents as presents. This craving for objects also underlies object hoarding disorders and shopping addiction. However, the biological causes of object pursuit have remained unknown. Part of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.