Age no obstacle to nerve cell regeneration, researchers find

January 17, 2014 by Bill Hathaway
Age no obstacle to nerve cell regeneration
Credit: Shutterstock

In aging worms at least, it is insulin, not Father Time, that inhibits a motor neuron's ability to repair itself—a finding that suggests declines in nervous system health may not be inevitable.

All organisms show a declining ability to regenerate damaged nervous systems with age, but the study appearing in the Feb. 5 issue of the journal Neuron suggests this deficit is not due to the ravages of time.

"The nervous system regulates its own response to age, separately from what happens in the rest of the body," said Marc Hammarlund, assistant professor of genetics and senior author of the new study. "By manipulating the insulin pathway, we can make animals that live longer but have nervous systems that age normally, or conversely, we can make animals that die at a normal age but have a young system."

Alexandra Byrne, postdoctoral associate in genetics and lead author of the study, identified two that regulate insulin activity and are responsible for age-related declines in a worm's ability to regenerate neuronal axons, or connective branches. The team pinpointed two other pathways that also regulate a neuron's ability to regenerate, but that have no connection to the age of the worm.

The worm C. elegans is a well-established model to study the genetics of aging, and manipulation of the family of genes that regulate activity has been shown to dramatically increase lifespan of the organism. The new study reveals that is also directly affecting the .

"We hope to understand how different pathways coordinately regulate neuronal aging, and more specifically, how to entice an aged neuron to regenerate after injury," Byrne said.

"The hope is to increase healthspan, not just lifespan," Hammarlund said.

Other Yale authors of the study are Trent Walradt, Kathryn E. Gardner, Austin Hubbert, and Valerie Reinke. The work was funded by the National Institutes of Health and the Ellison Medical Foundation.

Explore further: Study shows how insulin-like molecules play critical role in learning and memory

Related Stories

Study shows how insulin-like molecules play critical role in learning and memory

February 26, 2013
Though it's most often associated with disorders like diabetes, Harvard researchers have shown how the signaling pathway of insulin and insulin-like peptides plays another critical role in the body – helping to regulate ...

Lessons from the worm: How the elderly can live an active life

September 3, 2013
When the tiny roundworm C. elegans reaches middle age—at about 2 weeks old—it can't quite move like it did in the bloom of youth. But rather than imposing an exercise regimen to rebuild the worm's body-wall muscles, researchers ...

Research into axon degeneration hits a nerve

December 29, 2013
(Medical Xpress)—University of Queensland (UQ) researchers have made a significant discovery that could one day halt a number of neurodegenerative diseases.

Right combination of sugars regulates brain development in worms

September 19, 2013
If the development of our nervous system is disturbed, we risk developing serious neurological diseases, impairing our sensory systems, movement control or cognitive functions. This is true for all organisms with a well-developed ...

A new pathway for neuron repair is discovered

January 9, 2014
Penn State University molecular biologists have discovered a brand-new pathway for repairing nerve cells that could have implications for faster and improved healing. The researchers describe their findings in a paper titled ...

Turning back the clock on regeneration in neurons

April 19, 2013
(Medical Xpress)—When minor wounds heal, the fine nerve endings that sense touch, or control sweating, are usually able to regrow. Like many processes in the body, the ability to regenerate new tissues changes throughout ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.