Novel gene editing approach to cancer treatment shows promise in mice

May 1, 2017
cancer
Killer T cells surround a cancer cell. Credit: NIH

A novel gene therapy using CRISPR genome editing technology effectively targets cancer-causing "fusion genes" and improves survival in mouse models of aggressive liver and prostate cancers, University of Pittsburgh School of Medicine researchers report in a study published online today in Nature Biotechnology.

"This is the first time that gene editing has been used to specifically target . It is really exciting because it lays the groundwork for what could become a totally new approach to treating cancer," explained lead study author Jian-Hua Luo, M.D., Ph.D., professor of pathology at Pitt's School of Medicine and director of its High Throughput Genome Center.

Fusion genes, which often are associated with cancer, form when two previously separate genes become joined together and produce an abnormal protein that can cause or promote cancer.

Luo and his team had previously identified a panel of fusion genes responsible for recurrent and aggressive prostate cancer. In a study published earlier this year in the journal Gastroenterology, the team reported that one of these fusion genes, known as MAN2A1-FER, also is found in several other types of cancer, including that of the liver, lungs and ovaries, and is responsible for rapid tumor growth and invasiveness.

In the current study, the researchers employed the CRISPR-Cas9 genome editing technology to target unique DNA sequences formed because of the . The team used viruses to deliver the tools that cut out the mutated DNA of the fusion gene and replaced it with a gene that leads to death of the . Because the fusion gene is present only in cancer cells, not healthy ones, the gene therapy is highly specific. Such an approach could come with significantly fewer side effects when translated to the clinic, which is a major concern with other cancer treatments such as chemotherapy.

To conduct the study, the researchers used mouse models that had received transplants of human prostate and liver cancer cells. Editing the cancer fusion gene resulted in up to 30 percent reduction in tumor size. None of the mice exhibited metastasis and all survived during the eight-week observation period. In contrast, in control mice treated with viruses designed to cut out another not present in their tumors, the tumors increased nearly 40-fold in size, metastasis was observed in most animals, and all died before the end of the study.

The new findings suggest a completely new way to combat cancer. "Other types of cancer treatments target the foot soldiers of the army. Our approach is to target the command center, so there is no chance for the enemy's soldiers to regroup in the battlefield for a comeback," said Luo.

Another advantage over traditional cancer treatment is that the new approach is very adaptive. A common problem that renders standard chemotherapies ineffective is that the cancer cells evolve to generate new mutations. Using genome editing, the new mutations could be targeted to continue fighting the disease, Luo noted.

In the future, the researchers plan to test whether this strategy could completely eradicate the disease rather than induce the partial remission observed in the current study.

Explore further: A new approach to target an 'undruggable' prostate cancer driver

More information: Targeting genomic rearrangements in tumor cells through Cas9-mediated insertion of a suicide gene, Nature Biotechnology (2017). nature.com/articles/doi:10.1038/nbt.3843

Related Stories

A new approach to target an 'undruggable' prostate cancer driver

March 23, 2017
New research suggests a novel strategy to target a genetic anomaly that occurs in half of all prostate cancers.

New model could speed up colon cancer research

May 1, 2017
Using the gene-editing system known as CRISPR, MIT researchers have shown in mice that they can generate colon tumors that very closely resemble human tumors. This advance should help scientists learn more about how the disease ...

CAR T cells more powerful when built with CRISPR, researchers find

February 22, 2017
Researchers from Memorial Sloan Kettering Cancer Center (MSK) have harnessed the power of CRISPR/Cas9 to create more-potent chimeric antigen receptor (CAR) T cells that enhance tumor rejection in mice. The unexpected findings, ...

Skin cancer causing fusion gene identified

November 1, 2015
Angiosarcoma is a malignant cancer of the endothelial cells of blood or lymphatic vessels. Cutaneous angiosarcoma, a form of skin cancer, commonly occurs on the scalp of elderly people and can rapidly metastasize to the liver, ...

Predicting prostate cancer: Test identifies new methods for treatment

September 15, 2014
A genetic discovery out of the University of Pittsburgh School of Medicine is leading to a highly accurate test for aggressive prostate cancer and identifies new avenues for treatment.

Recommended for you

Genome analysis with near-complete privacy possible, say researchers

August 17, 2017
It is now possible to scour complete human genomes for the presence of disease-associated genes without revealing any genetic information not directly associated with the inquiry, say Stanford University researchers.

Science Says: DNA test results may not change health habits

August 17, 2017
If you learned your DNA made you more susceptible to getting a disease, wouldn't you work to stay healthy?

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Phenotype varies for presumed pathogenic variants in KCNB1

August 16, 2017
(HealthDay)—De novo KCNB1 missense and loss-of-function variants are associated with neurodevelopmental disorders, with or without seizures, according to a study published online Aug. 14 in JAMA Neurology.

Active non-coding DNA might help pinpoint genetic risk for psychiatric disorders

August 16, 2017
Northwestern Medicine scientists have demonstrated a new method of analyzing non-coding regions of DNA in neurons, which may help to pinpoint which genetic variants are most important to the development of schizophrenia and ...

Evolved masculine and feminine behaviors can be inherited from social environment

August 15, 2017
The different ways men and women behave, passed down from generation to generation, can be inherited from our social environment - not just from genes, experts have suggested.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.