Existing drugs could benefit patients with bone cancer, genetic study suggests

June 23, 2017
cancer
Killer T cells surround a cancer cell. Credit: NIH

A subgroup of patients with osteosarcoma - a form of bone cancer - could be helped by an existing drug, suggest scientists from the Wellcome Trust Sanger Institute and their collaborators at University College London Cancer Institute and the Royal National Orthopaedic Hospital NHS Trust. In the largest genetic sequencing study of osteosarcoma to date, scientists discovered that 10 per cent of patients with a genetic mutation in particular growth factor signalling genes may benefit from existing drugs, known as IGF1R inhibitors.

The results, published today (23 June) in Nature Communications suggest a re-trial of IGF1R inhibitors for the subset of patients with osteosarcoma who are likely to respond based on their genetic profile.

Osteosarcoma is the most common form of primary bone cancer in children and young adults, usually affecting people aged 10 to 24 years. 160 new patients are diagnosed with osteosarcoma in the UK each year, of which around one third cannot be cured.

The current for osteosarcoma is chemotherapy followed by surgery, where the bone tumours are removed. There has not been a new treatment for osteosarcoma in almost 40 years, in spite of extensive research.

In the study, scientists analysed the genome of 112 childhood and adult tumours - double the number of tumours studied previously. In 10 per cent of cases, the team discovered cancer-driving mutations in insulin-like growth factor (IGF) signalling genes.

IGF signalling plays a major role in bone growth and development during puberty. Researchers believe that IGF signalling is also implicated in the uncontrollable growth of bone that is characteristic of osteosarcoma.

IGF signalling genes are the target of existing drugs, known as IGF1R inhibitors. Past clinical trials of IGF1R inhibitors as a treatment for osteosarcoma yielded mixed results although occasional patients responded to the treatment. In spite of this, IGF1R inhibitors have not been further tested in osteosarcoma, as it had been unclear who would benefit from the treatment.

Dr Sam Behjati, first author from the Wellcome Trust Sanger Institute and University of Cambridge, said: "Osteosarcoma is difficult to treat. Despite extensive research over the past 40 years, no new treatment options have been found. In this study we reveal a clear biological target for osteosarcoma that can be reached with existing drugs."

In the study, scientists looked for mutations in the tumours to understand the mechanism of osteosarcoma development. The genetic information revealed a specific process for rearranging the chromosomes that results in several cancer-driving mutations at once.

Professor Adrienne Flanagan, senior author from the Royal National Orthopaedic Hospital NHS Trust and University College London Cancer Institute, said: "By sequencing the whole genome of the tumours, we have unpicked the mechanism behind osteosarcoma for the first time. We discovered a new process—chromothripsis amplification - in which the chromosome is shattered, multiplied and rejigged to generate multiple cancer-driving mutations at the same time. We believe this is why we see very similar osteosarcoma tumours in children and adults, which are not the result of ageing."

Dr Peter Campbell, lead author from the Wellcome Trust Sanger Institute, said: "Currently, there are no new osteosarcoma treatments on the horizon. Genomic sequencing has provided the evidence needed to revisit clinical trials of IGF1R inhibitors for the subset of patients that responded in the past. The mutations of patients' tumours may enable clinicians to predict who will, and will not respond to these drugs, resulting in more efficient clinical trials. The drugs could be effective for 10 per cent of ."

Explore further: One in five breast cancer patients could benefit from existing treatment, genetic study reveals

More information: Sam Behjati et al. (2017) Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nature Communications. DOI: ncomms15936

Related Stories

One in five breast cancer patients could benefit from existing treatment, genetic study reveals

March 13, 2017
Researchers from the Wellcome Trust Sanger Institute and their collaborators have discovered that a greater number of breast cancers are genetically similar to rarer cases with faulty BRCA1 or BRCA2 genes. The results published ...

Bone cancer researchers discover how to block, potentially treat osteosarcoma

December 9, 2015
Scientists at Princess Margaret Cancer Centre have discovered that blocking the master regulator of bone renewal stops osteosarcoma - the most common primary bone cancer in children and teens, and the malignant disease that ...

Research identifies potential proteins to target in osteosarcoma treatment

May 27, 2015
New models developed at the Masonic Cancer Center, University of Minnesota reveal the genes and pathways that, when altered, can cause osteosarcoma. The information could be used to better target treatments for the often-deadly ...

Bone cancer, from the lab to the clinic

June 8, 2011
A new study into osteosarcoma - cancer of the bone - will use advances in genomic research and analysis to identify new genes that give rise to the condition and to create personalised blood tests for children and young adults ...

DNA imprinting defects associated with childhood osteosarcoma development and progression

January 26, 2016
Children diagnosed with osteosarcoma may be impacted by a DNA imprinting defect also found in parents, according to new research from the Masonic Cancer Center, University of Minnesota. DNA imprinting is a phenomenon in which ...

Recommended for you

New bowel cancer drug target discovered

October 17, 2017
Researchers at the Francis Crick Institute have discovered a new drug target for bowel cancer that is specific to tumour cells and therefore less toxic than conventional therapies.

Using artificial intelligence to improve early breast cancer detection

October 17, 2017
Every year 40,000 women die from breast cancer in the U.S. alone. When cancers are found early, they can often be cured. Mammograms are the best test available, but they're still imperfect and often result in false positive ...

Many pelvic tumors in women may have common origin—fallopian tubes

October 17, 2017
Most—and possibly all—ovarian cancers start, not in ovaries, but instead in the fallopian tubes attached to them.

Researchers find novel mechanism of resistance to anti-cancer drugs

October 17, 2017
The targeted anti-cancer therapies cetuximab and panitumumab are mainstays of treatment for advanced colorectal cancer, the second leading cause of cancer-related deaths in the United States. However, many patients have tumors ...

Biology of childhood brain tumor subtypes offers clues to precision treatments

October 17, 2017
Researchers investigating pediatric low-grade gliomas (PLGG), the most common type of brain tumor in children, have discovered key biological differences in how mutated genes combine with other genes to drive this childhood ...

New assay may boost targeted treatment of non-Hodgkin lymphoma

October 17, 2017
Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer and the most frequently diagnosed non-Hodgkin lymphoma worldwide (nearly 40% of cases). Recent advancements indicate that both the prognosis and choice of treatment ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.