Mice headed for space to test bone-building drug

June 2, 2017 by Mirabai Vogt-James, University of California, Los Angeles
Mice headed for space to test bone-building drug
A bone densitometer will accompany the mice to the space station. It measures the bone density of the animals. Credit: University of California, Los Angeles

What do space travel, rodents and a bone-building protein all have in common? A team of UCLA scientists is bringing these three elements together to test an experimental drug that could one day result in a treatment for osteoporosis, which affects more than 200 million people worldwide.

The drug could also potentially help those with bone damage or loss, a condition that afflicts people with traumatic bone injury, such as injured military service members, as well as astronauts who lose while in space.

Led by Dr. Chia Soo and Dr. Kang Ting, who met and married while working on this project, as well as Dr. Ben Wu, the UCLA research team is scheduled to send 40 rodents to the International Space Station this week. Once there, the rodents will receive injections of the experimental drug, which is based on a bone-building protein called NELL-1. The project is being done in collaboration with NASA and the Center for the Advancement of Science in Space, which manages the U.S. National Laboratory on the space station.

"This is really a pivotal point in the study of NELL-1's effect on bone density," said Soo, principal investigator on the study, the vice chair for research in the UCLA Division of Plastic and Reconstructive Surgery, and a member of the UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research. "We would not be at this point without many years of funding and support from the National Institutes of Health, the California Institute for Regenerative Medicine and several UCLA departments and centers. We are honored to conduct the next phase of our research in the U.S. National Laboratory."

Credit: University of California, Los Angeles

The UCLA researchers have been conducting studies on NELL-1 for more than 18 years and were excited when Julie Robinson, NASA's chief scientist for the International Space Station Program, visited UCLA in early 2014 and encouraged them to submit a grant that would fund their NELL-1 research in space. The team received the necessary funding from the Center for the Advancement of Science in Space in September 2014 to move forward with the project.

"The preparations have been very exciting; we've had conference calls with NASA's Ames Research Center every two weeks to go over all the fine details," said Dr. Jin Hee Kwak, an assistant professor of orthodontics in the UCLA School of Dentistry and project manager on the study. "Everything is choreographed down to the tiniest details, such as whether you're going to fill a syringe half way or all the way—that small amount affects the total weight of the rocket."

SpaceX's Dragon spacecraft is currently targeted to blast off from Kennedy Space Center in Florida today. It will be the first time that UCLA scientists send rodents to the International Space Station. After living in microgravity and receiving NELL-1 injections for about four weeks, half of the rodents will return from space and land in the Pacific Ocean off the coast of Baja, California.

This marks the first time that American researchers will bring back live rodents from the International Space Station. After retrieval, the rodents will be returned to UCLA where they will continue to receive the NELL-1 drug for an additional four weeks. The remaining half of the rodents that stay in the space station will also receive an additional four-week dosage of the drug and will return to UCLA later.

"To prepare for the space project and eventual clinical use, we chemically modified NELL-1 to stay active longer," said Wu, who is chair of the division of advanced prosthodontics in the UCLA School of Dentistry and professor in the schools of engineering and medicine. "We also engineered the NELL-1 protein with a special molecule that binds to bone, so the molecule directs NELL-1 to its correct target, similar to how a homing device directs a missile."

Discovered in 1996 by Ting, NELL-1 has a powerful effect on tissue-specific stem cells that create bone-building cells called osteoblasts. When exposed to NELL-1, the stem cells create osteoblasts that are much more effective at building bone. Furthermore, NELL-1 reduces the function of osteoclasts, which are the cells that break down bone.

"Our preclinical studies show that NELL-1's dual effect on both osteoblasts and osteoclasts significantly increases bone density," said Ting, chair of the section of orthodontics and the division of growth and development in the UCLA School of Dentistry.

After the age of 50, humans typically lose about 0.5 percent of their bone mass each year. But in space, bone loss significantly increases due to the lack of gravity. It is commonly known that bone density is improved by physical activity that puts pressure on bone, which helps it stay strong. Without gravity's pressure, astronauts can lose around 1.5 percent of their each month. Therefore, is an ideal testing environment for NELL-1's effect on density.

Research on NELL-1 is supported by past or current grants from the National Institute of Dental and Craniofacial Research, the National Institute of Arthritis and Musculoskeletal and Skin Diseases, the California Institute for Regenerative Medicine, the UCLA Broad Stem Cell Research Center, the UCLA School of Dentistry, the UCLA Department of Orthopaedic Surgery and the UCLA Orthopaedic Hospital Research Center.

The experimental NELL-1 drug described above is used in preclinical tests only and has not been tested in humans or approved by the Food and Drug Administration as safe and effective for use in humans.

Explore further: Study reveals bone-building protein's impact on bone stem cells

Related Stories

Study reveals bone-building protein's impact on bone stem cells

June 30, 2015
A new study by UCLA researchers shows that administering the protein NELL-1 intravenously stimulates significant bone formation through the regenerative ability of stem cells.

Research with space explorers may one day heal Earth's warriors

February 24, 2015
Growing bone on demand sounds like a space-age concept—a potentially life changing one. Such a capability could benefit those needing bone for reconstructive surgery due to trauma like combat injuries or those waging a ...

Protein combination improves bone regeneration, study shows

January 28, 2016
A UCLA research team has found a combination of proteins that could significantly improve clinical bone restoration. The findings may be a big step toward developing effective therapeutic treatments for bone skeletal defects, ...

A better way to grow bone: Fresh, purified fat stem cells grow bone faster and better

June 11, 2012
UCLA stem cell scientists purified a subset of stem cells found in fat tissue and made from them bone that was formed faster and was of higher quality than bone grown using traditional methods, a finding that may one day ...

New strategy aims to enhance efficacy and safety of bone repair treatment

January 6, 2016
Bone morphogenetic protein-2 (BMP2) is used clinically to promote bone repair. However, the high BMP2 concentrations required to stimulate bone growth in humans may produce life-threatening adverse effects such as cervical ...

Genetic factors control regenerative properties of blood-forming stem cells

December 5, 2016
Researchers from the UCLA Department of Medicine, Division of Hematology Oncology and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have published two studies that define how key ...

Recommended for you

Researchers discover drug cocktail that increases lifespan

October 22, 2018
A team of researchers led by Principal Investigator Dr. Jan Gruber from Yale-NUS College has discovered a combination of pharmaceutical drugs that not only increases healthy lifespan in the microscopic worm Caenorhabditis ...

Targeting a hunger hormone to treat obesity

October 22, 2018
About 64 per cent of Canadian adults are overweight or obese, according to Health Canada. That's a problem, because obesity promotes the emergence of chronic diseases such as type 2 diabetes, heart disease and some cancers.

Scientists in Sweden may have figured out one way acne bacteria defies treatment

October 22, 2018
Researchers in Sweden have discovered how acne-causing bacteria feed off their human hosts. The study, which was performed at KTH Royal Institute of Technology, could make it possible to find effective ways to treat severe ...

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Scientists grow functioning human neural networks in 3-D from stem cells

October 18, 2018
A team of Tufts University-led researchers has developed three-dimensional (3-D) human tissue culture models for the central nervous system that mimic structural and functional features of the brain and demonstrate neural ...

Functional engineered oesophagus could pave way for clinical trials 

October 18, 2018
The world's first functional oesophagus engineered from stem cells has been grown and successfully transplanted into mice, as part of a pioneering new study led by UCL.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.