Mice headed for space to test bone-building drug

June 2, 2017 by Mirabai Vogt-James
Mice headed for space to test bone-building drug
A bone densitometer will accompany the mice to the space station. It measures the bone density of the animals. Credit: University of California, Los Angeles

What do space travel, rodents and a bone-building protein all have in common? A team of UCLA scientists is bringing these three elements together to test an experimental drug that could one day result in a treatment for osteoporosis, which affects more than 200 million people worldwide.

The drug could also potentially help those with bone damage or loss, a condition that afflicts people with traumatic bone injury, such as injured military service members, as well as astronauts who lose while in space.

Led by Dr. Chia Soo and Dr. Kang Ting, who met and married while working on this project, as well as Dr. Ben Wu, the UCLA research team is scheduled to send 40 rodents to the International Space Station this week. Once there, the rodents will receive injections of the experimental drug, which is based on a bone-building protein called NELL-1. The project is being done in collaboration with NASA and the Center for the Advancement of Science in Space, which manages the U.S. National Laboratory on the space station.

"This is really a pivotal point in the study of NELL-1's effect on bone density," said Soo, principal investigator on the study, the vice chair for research in the UCLA Division of Plastic and Reconstructive Surgery, and a member of the UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research. "We would not be at this point without many years of funding and support from the National Institutes of Health, the California Institute for Regenerative Medicine and several UCLA departments and centers. We are honored to conduct the next phase of our research in the U.S. National Laboratory."

Credit: University of California, Los Angeles

The UCLA researchers have been conducting studies on NELL-1 for more than 18 years and were excited when Julie Robinson, NASA's chief scientist for the International Space Station Program, visited UCLA in early 2014 and encouraged them to submit a grant that would fund their NELL-1 research in space. The team received the necessary funding from the Center for the Advancement of Science in Space in September 2014 to move forward with the project.

"The preparations have been very exciting; we've had conference calls with NASA's Ames Research Center every two weeks to go over all the fine details," said Dr. Jin Hee Kwak, an assistant professor of orthodontics in the UCLA School of Dentistry and project manager on the study. "Everything is choreographed down to the tiniest details, such as whether you're going to fill a syringe half way or all the way—that small amount affects the total weight of the rocket."

SpaceX's Dragon spacecraft is currently targeted to blast off from Kennedy Space Center in Florida today. It will be the first time that UCLA scientists send rodents to the International Space Station. After living in microgravity and receiving NELL-1 injections for about four weeks, half of the rodents will return from space and land in the Pacific Ocean off the coast of Baja, California.

This marks the first time that American researchers will bring back live rodents from the International Space Station. After retrieval, the rodents will be returned to UCLA where they will continue to receive the NELL-1 drug for an additional four weeks. The remaining half of the rodents that stay in the space station will also receive an additional four-week dosage of the drug and will return to UCLA later.

"To prepare for the space project and eventual clinical use, we chemically modified NELL-1 to stay active longer," said Wu, who is chair of the division of advanced prosthodontics in the UCLA School of Dentistry and professor in the schools of engineering and medicine. "We also engineered the NELL-1 protein with a special molecule that binds to bone, so the molecule directs NELL-1 to its correct target, similar to how a homing device directs a missile."

Discovered in 1996 by Ting, NELL-1 has a powerful effect on tissue-specific stem cells that create bone-building cells called osteoblasts. When exposed to NELL-1, the stem cells create osteoblasts that are much more effective at building bone. Furthermore, NELL-1 reduces the function of osteoclasts, which are the cells that break down bone.

"Our preclinical studies show that NELL-1's dual effect on both osteoblasts and osteoclasts significantly increases bone density," said Ting, chair of the section of orthodontics and the division of growth and development in the UCLA School of Dentistry.

After the age of 50, humans typically lose about 0.5 percent of their bone mass each year. But in space, bone loss significantly increases due to the lack of gravity. It is commonly known that bone density is improved by physical activity that puts pressure on bone, which helps it stay strong. Without gravity's pressure, astronauts can lose around 1.5 percent of their each month. Therefore, is an ideal testing environment for NELL-1's effect on density.

Research on NELL-1 is supported by past or current grants from the National Institute of Dental and Craniofacial Research, the National Institute of Arthritis and Musculoskeletal and Skin Diseases, the California Institute for Regenerative Medicine, the UCLA Broad Stem Cell Research Center, the UCLA School of Dentistry, the UCLA Department of Orthopaedic Surgery and the UCLA Orthopaedic Hospital Research Center.

The experimental NELL-1 drug described above is used in preclinical tests only and has not been tested in humans or approved by the Food and Drug Administration as safe and effective for use in humans.

Explore further: Study reveals bone-building protein's impact on bone stem cells

Related Stories

Study reveals bone-building protein's impact on bone stem cells

June 30, 2015
A new study by UCLA researchers shows that administering the protein NELL-1 intravenously stimulates significant bone formation through the regenerative ability of stem cells.

Research with space explorers may one day heal Earth's warriors

February 24, 2015
Growing bone on demand sounds like a space-age concept—a potentially life changing one. Such a capability could benefit those needing bone for reconstructive surgery due to trauma like combat injuries or those waging a ...

Protein combination improves bone regeneration, study shows

January 28, 2016
A UCLA research team has found a combination of proteins that could significantly improve clinical bone restoration. The findings may be a big step toward developing effective therapeutic treatments for bone skeletal defects, ...

A better way to grow bone: Fresh, purified fat stem cells grow bone faster and better

June 11, 2012
UCLA stem cell scientists purified a subset of stem cells found in fat tissue and made from them bone that was formed faster and was of higher quality than bone grown using traditional methods, a finding that may one day ...

New strategy aims to enhance efficacy and safety of bone repair treatment

January 6, 2016
Bone morphogenetic protein-2 (BMP2) is used clinically to promote bone repair. However, the high BMP2 concentrations required to stimulate bone growth in humans may produce life-threatening adverse effects such as cervical ...

Genetic factors control regenerative properties of blood-forming stem cells

December 5, 2016
Researchers from the UCLA Department of Medicine, Division of Hematology Oncology and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have published two studies that define how key ...

Recommended for you

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.