Skin disease caused by sperm cell transmission of keratin mutation

June 16, 2017
Epidermolytic nevus (EN) is visible as patches of thickened skin over small areas of the body. Mutations in genes encoding the skin proteins keratin 1 or keratin 10 are responsible for EN, but these mutations only occur in some cell populations of the body, including those of skin lesions, so they are known as mosaic. When the causative mutation occurs in germ cells, it is known as gonadal mosaicism. Birthmarks are not usually inherited because sperm cell genes are rarely mutated. However, when inheritance does occur, the children develop skin symptoms identical to their affected parent but covering their entire body. Credit: Nagoya University

Nagoya University research identified a patient with the whole-body skin disease epidermolytic ichthyosis that had been inherited as a germline mutation from her father with the milder epidermolytic nevus. Analysis of genomic DNA from the patient revealed a mutation in the keratin 10 gene, which was identical to that observed in cells taken from patches of thickened skin on the father's body. Assessing transmission risk of such diseases allows affected couples to receive genetic counseling.

A Nagoya University research collaboration reveals the father–daughter inheritance of a mosaic disease as a sperm cell mutation causing a whole- skin disorder: relevance to .

Birthmarks can be caused by an overgrowth of in the top layer of skin, as in the case of epidermolytic nevus (EN), which is visible as patches of thickened skin over small areas of the body. Mutations in genes encoding the skin proteins keratin 1 or keratin 10 are responsible for EN, but these only occur in some cell populations of the body so they are known as mosaic. Birthmarks are not usually inherited because the genes of sperm and cells are rarely mutated. However, when inheritance does occur, the children develop skin symptoms identical to their affected parent but covering their entire body.

Research at Nagoya University in collaboration with Juntendo University Urayasu Hospital has led to the identification of one such case of EN in a father that was transmitted to his daughter as a sperm cell (germline) mutation, resulting in the more widespread skin disorder epidermolytic ichthyosis (EI), which affects the whole body. The study was reported in the Journal of Investigative Dermatology.

EI symptoms are obvious from birth as skin redness and blistering that completely covers the body. This worsens over time, with the skin becoming scaly and thickened. Nagoya University researchers clinically diagnosed EI in a 2-year-old Japanese girl, and confirmed her diagnosis with the detection of a mutation in the gene encoding keratin 10.

The girl's father had small patches of thickened skin on his hand, abdomen, and groin, affecting just 0.5% of his body surface. "We took a skin sample from one of these areas and identified the identical keratin 10 mutation that we detected in his daughter," co-author Yasushi Suga says. "This confirmed that the same mutation was causative of EN in the father and had been transmitted to the daughter as EI."

The parents of the girl wanted to know the likelihood of their future children being affected by EI, so the research team used a highly sensitive DNA sequencing technique to reveal that 3.9% of the father's semen carried the mutation. However, determining the exact risk of disease transmission requires consideration of the effect that the mutation has on the sperm's ability to fertilize an egg.

"Symptoms of mosaic inherited skin disorders are highly visible so diseases can be identified before the birth of affected children, unlike genetic diseases that don't affect the skin," corresponding author Michihiro Kono says. "This enables the risk of disease transmission to be determined, and couples to undergo genetic counseling."

Explore further: Study finds cause of, and possible cure for, genetic skin disorder

More information: Michihiro Kono et al. A child with epidermolytic ichthyosis from a parent with epidermolytic nevus: risk evaluation of transmission from mosaic to germline, Journal of Investigative Dermatology (2017). DOI: 10.1016/j.jid.2017.04.036

Related Stories

Study finds cause of, and possible cure for, genetic skin disorder

June 1, 2017
Yale scientists have discovered the cause of a disfiguring skin disorder and determined that a commonly used medication can help treat the condition.

Why thick skin develops on palms and soles, and its links to cancer

February 1, 2017
Scientists from Queen Mary University of London have discovered that foot callouses/keratoderma (thickened skin) can be linked to cancer of the oesophagus (gullet), a disease which affects more than 8000 people in the UK ...

Inherited, rare skin disease informs treatment of common hair disorders, study finds

June 8, 2017
It is almost axiomatic in medicine that the study of rare disorders informs the understanding of more common, widespread ailments. Researchers from the Perelman School of Medicine at the University of Pennsylvania who study ...

Uncovering the biology of a painful and disfiguring pediatric disease

June 12, 2017
Hyaline Fibromatosis Syndrome (HFS) is a rare but severe genetic disease that affects babies, children, and adults. A glassy substance called hyaline accumulates in the skin and various organs of patients, causing painful ...

Scientists discover genetic mutation that causes rare skin disease keratolytic winter erythema

May 5, 2017
Scientists have discovered the genetic mutation that causes the rare skin disease, keratolytic winter erythema (KWE), or 'Oudtshoorn skin', in Afrikaners.

Recommended for you

Genome analysis with near-complete privacy possible, say researchers

August 17, 2017
It is now possible to scour complete human genomes for the presence of disease-associated genes without revealing any genetic information not directly associated with the inquiry, say Stanford University researchers.

Science Says: DNA test results may not change health habits

August 17, 2017
If you learned your DNA made you more susceptible to getting a disease, wouldn't you work to stay healthy?

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Phenotype varies for presumed pathogenic variants in KCNB1

August 16, 2017
(HealthDay)—De novo KCNB1 missense and loss-of-function variants are associated with neurodevelopmental disorders, with or without seizures, according to a study published online Aug. 14 in JAMA Neurology.

Active non-coding DNA might help pinpoint genetic risk for psychiatric disorders

August 16, 2017
Northwestern Medicine scientists have demonstrated a new method of analyzing non-coding regions of DNA in neurons, which may help to pinpoint which genetic variants are most important to the development of schizophrenia and ...

Evolved masculine and feminine behaviors can be inherited from social environment

August 15, 2017
The different ways men and women behave, passed down from generation to generation, can be inherited from our social environment - not just from genes, experts have suggested.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.