Artificial bile ducts grown in lab, transplanted into mice could help treat liver disease

July 3, 2017, University of Cambridge
An image of a mouse gallbladder following repair with a bioengineered patch of tissue incorporating human 'bile duct' cells, shown in green. The human bile duct cells have fully repaired and replaced the damaged mouse epithelium. Credit: Fotis Sampaziotis

Cambridge scientists have developed a new method for growing and transplanting artificial bile ducts that could in future be used to help treat liver disease in children, reducing the need for liver transplantation.

In research published in the journal Nature Medicine, the researchers grew 3D cellular structure which, once transplanted into mice, developed into normal, functioning .

Bile ducts are long, tube-like structures that carry bile, which is secreted by the liver andis essential for helping us digest food. If the ducts do not work correctly, for example in the childhood disease biliary atresia, this can lead to damaging build of bile in the liver.

The study suggests that it will be feasible to generate and transplant artificial human bile ducts using a combination of cell transplantation and tissue engineering technology. This approach provides hope for the future treatment of diseases of the bile duct; at present, the only option is a transplant.

The University of Cambridge research team, led by Professor Ludovic Vallier and Dr Fotios Sampaziotis from the Wellcome-MRC Cambridge Stem Cell Institute and Dr Kourosh Saeb-Parsy from the Department of Surgery, extracted healthy cells (cholangiocytes) from bile ducts and grew these into functioning 3D duct structures known as biliary organoids. When transplanted into mice, the biliary organoids assembled into intricate tubular structures, resembling bile ducts.

The researchers, in collaboration with Mr Alex Justin and Dr Athina Markaki from the Department of Engineering, then investigated whether the biliary organoids could be grown on a 'biodegradable collagen scaffold', which could be shaped into a tube and used to repair damaged bile ducts in the body. After four weeks, the cells had fully covered the miniature scaffolding resulting in artificial tubes which exhibited key features of a normal, functioning bile duct. These artificial ducts were then used to replace damaged bile ducts in mice. The artificial duct transplants were successful, with the animals surviving without further complications.

"Our work has the potential to transform the treatment of bile duct disorders," explains Professor Vallier. "At the moment, our only option is , so we are limited by the availability of healthy organs for transplantation. In future, we believe it will be possible to generate large quantities of bioengineered tissue that could replace diseased bile ducts and provide a powerful new therapeutic option without this reliance on organ transplants."

"This demonstrates the power of tissue engineering and regenerative medicine," adds Dr Sampaziotis. "These artificial bile ducts will not only be useful for transplanting, but could also be used to model other diseases of the bile duct and potentially develop and test new drug treatments."

Explore further: Cystic fibrosis treatment tested on lab-grown bile ducts

More information: Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids, Nature Medicine (2017). DOI: 10.1038/nm.4360

Related Stories

Cystic fibrosis treatment tested on lab-grown bile ducts

July 14, 2015
An experimental cystic fibrosis drug has been shown prevent the disease's damage to the liver, thanks to a world-first where scientists grew mini bile ducts in the lab.

Scientists discover how the liver unclogs itself

June 30, 2017
A multi-disciplinary team of researchers from the Mechanobiology Institute, Singapore (MBI) at the National University of Singapore (NUS), the Institute of Bioengineering and Nanotechnology (IBN) of A*STAR, and BioSyM, Singapore-MIT ...

Regular aspirin use may protect against bile duct cancer

May 9, 2016
(HealthDay)—Regular aspirin use may lower the risk of bile duct cancer, according to a study published online April 26 in Hepatology.

Aspirin use may help prevent bile duct cancer, study finds

April 19, 2016
A team of current and former Mayo Clinic researchers has discovered that aspirin use is associated with a significantly reduced risk of developing bile duct cancer, also called cholangiocarcinoma. The results are published ...

Bile duct cancer study sheds light on triggers that cause disease

October 10, 2016
Scientists have identified a molecule that drives the development of bile duct cancer.

Recommended for you

Small molecule plays big role in weaker bones as we age

September 18, 2018
With age, expression of a small molecule that can silence others goes way up while a key signaling molecule that helps stem cells make healthy bone goes down, scientists report.

Sperm quality study updates advice for couples trying to conceive

September 17, 2018
Could doctors at fertility clinics be giving men bad advice? Dr. Da Li and Dr. XiuXia Wang, who are clinician-researchers at the Center for Reproductive Medicine of Shengjing Hospital in Shenyang in northeast China, think ...

Antioxidant found to be effective in treating mice with osteoarthritis

September 14, 2018
A team of researchers in Belgium and the Netherlands has found that feeding a common antioxidant to test mice was effective in treating osteoarthritis. In their paper published in Science Translational Medicine, the group ...

Facilitating diagnosis with a new type of biosensor

September 14, 2018
Scientists from the Max Planck Institute and EPFL have developed a new type of biosensor able to precisely quantify metabolites using a single drop of blood. The accuracy and simplicity of the procedure could make it a tool ...

Newly formed blood vessels may contribute to eye disease

September 14, 2018
Newly formed blood vessels may be cracks in the barrier between the bloodstream and the eye, according to a Northwestern Medicine study published in the Proceedings of the National Academy of Sciences.

How skin begins: New research could improve skin grafts, and more

September 14, 2018
University of Colorado Boulder researchers have discovered a key mechanism by which skin begins to develop in embryos, shedding light on the genetic roots of birth defects like cleft palate and paving the way for development ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.