Artificial bile ducts grown in lab, transplanted into mice could help treat liver disease

July 3, 2017, University of Cambridge
An image of a mouse gallbladder following repair with a bioengineered patch of tissue incorporating human 'bile duct' cells, shown in green. The human bile duct cells have fully repaired and replaced the damaged mouse epithelium. Credit: Fotis Sampaziotis

Cambridge scientists have developed a new method for growing and transplanting artificial bile ducts that could in future be used to help treat liver disease in children, reducing the need for liver transplantation.

In research published in the journal Nature Medicine, the researchers grew 3D cellular structure which, once transplanted into mice, developed into normal, functioning .

Bile ducts are long, tube-like structures that carry bile, which is secreted by the liver andis essential for helping us digest food. If the ducts do not work correctly, for example in the childhood disease biliary atresia, this can lead to damaging build of bile in the liver.

The study suggests that it will be feasible to generate and transplant artificial human bile ducts using a combination of cell transplantation and tissue engineering technology. This approach provides hope for the future treatment of diseases of the bile duct; at present, the only option is a transplant.

The University of Cambridge research team, led by Professor Ludovic Vallier and Dr Fotios Sampaziotis from the Wellcome-MRC Cambridge Stem Cell Institute and Dr Kourosh Saeb-Parsy from the Department of Surgery, extracted healthy cells (cholangiocytes) from bile ducts and grew these into functioning 3D duct structures known as biliary organoids. When transplanted into mice, the biliary organoids assembled into intricate tubular structures, resembling bile ducts.

The researchers, in collaboration with Mr Alex Justin and Dr Athina Markaki from the Department of Engineering, then investigated whether the biliary organoids could be grown on a 'biodegradable collagen scaffold', which could be shaped into a tube and used to repair damaged bile ducts in the body. After four weeks, the cells had fully covered the miniature scaffolding resulting in artificial tubes which exhibited key features of a normal, functioning bile duct. These artificial ducts were then used to replace damaged bile ducts in mice. The artificial duct transplants were successful, with the animals surviving without further complications.

"Our work has the potential to transform the treatment of bile duct disorders," explains Professor Vallier. "At the moment, our only option is , so we are limited by the availability of healthy organs for transplantation. In future, we believe it will be possible to generate large quantities of bioengineered tissue that could replace diseased bile ducts and provide a powerful new therapeutic option without this reliance on organ transplants."

"This demonstrates the power of tissue engineering and regenerative medicine," adds Dr Sampaziotis. "These artificial bile ducts will not only be useful for transplanting, but could also be used to model other diseases of the bile duct and potentially develop and test new drug treatments."

Explore further: Cystic fibrosis treatment tested on lab-grown bile ducts

More information: Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids, Nature Medicine (2017). DOI: 10.1038/nm.4360

Related Stories

Cystic fibrosis treatment tested on lab-grown bile ducts

July 14, 2015
An experimental cystic fibrosis drug has been shown prevent the disease's damage to the liver, thanks to a world-first where scientists grew mini bile ducts in the lab.

Scientists discover how the liver unclogs itself

June 30, 2017
A multi-disciplinary team of researchers from the Mechanobiology Institute, Singapore (MBI) at the National University of Singapore (NUS), the Institute of Bioengineering and Nanotechnology (IBN) of A*STAR, and BioSyM, Singapore-MIT ...

Regular aspirin use may protect against bile duct cancer

May 9, 2016
(HealthDay)—Regular aspirin use may lower the risk of bile duct cancer, according to a study published online April 26 in Hepatology.

Aspirin use may help prevent bile duct cancer, study finds

April 19, 2016
A team of current and former Mayo Clinic researchers has discovered that aspirin use is associated with a significantly reduced risk of developing bile duct cancer, also called cholangiocarcinoma. The results are published ...

Bile duct cancer study sheds light on triggers that cause disease

October 10, 2016
Scientists have identified a molecule that drives the development of bile duct cancer.

Recommended for you

Stem cells treat macular degeneration

March 19, 2018
In July 2015, 86-year-old Douglas Waters developed severe age-related macular degeneration (AMD). He struggled to see things clearly, even when up close.

Commonly used drugs affect gut bacteria

March 19, 2018
One in four drugs with human targets inhibit the growth of bacteria in the human gut. These drugs cause antibiotic-like side-effects and may promote antibiotic resistance, EMBL researchers report in Nature on March 19.

Measuring neutrophil motility could lead to accurate sepsis diagnosis

March 19, 2018
A microfluidic device developed by Massachusetts General Hospital (MGH) investigators may help solve a significant and persistent challenge in medicine—diagnosing the life-threatening complication of sepsis. In their paper ...

Human 'chimeric' cells restore crucial protein in Duchenne muscular dystrophy

March 16, 2018
Cells made by fusing a normal human muscle cell with a muscle cell from a person with Duchenne muscular dystrophy —a rare but fatal form of muscular dystrophy—were able to significantly improve muscle function when implanted ...

Team develops 3-D tissue model of a developing human heart

March 16, 2018
The heart is the first organ to develop in the womb and the first cause of concern for many parents.

Genetic variant discovery to help asthma sufferers

March 16, 2018
Research from the University of Liverpool, published today in Lancet Respiratory Medicine, identifies a genetic variant that could improve the safety and effectiveness of corticosteroids, drugs that are used to treat a range ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.