Brain damage could occur from blast-induced cavitation

July 18, 2017
Credit: copyright American Heart Association

Ashfaq Adnan, an associate professor of mechanical engineering at The University of Texas at Arlington, and his postdoctoral associate Yuan Ting Wu recently published research findings in Nature's Scientific Reports revealing that if battlefield blasts may cause cavitation in the brain's perineuronal nets, which, in turn, may collapse and cause neuronal damage.

Cavitation is the development of bubbles, much like those that develop around a ship's spinning propellers.

Existing scans and medical technology cannot detect whether bubble forms inside the due to blasts or how these blasts affect a person's individual neurons, the brain cells responsible for processing and transmitting information by electrochemical signaling. Adnan's research focuses on studying the structural damage in neurons and the surrounding perineuronal nets area in the brain. He then determines the point at which mechanical forces may damage the PNN or injure the neurons.

Adnan's paper, a result of research supported by a grant through the Office of Naval Research's Warfighter Performance Department and UTA, is titled, "Effect of shock-induced cavitation bubble collapse on the damage in the simulated perineuronal nets of the brain." Timothy Bentley is the program's director.

"This study reveals that if a blast-like event affects the brain under certain circumstances, the mechanical forces could damage the perineuronal net located adjacent to the neurons, which could lead to damage of the neurons themselves. It is important to prove this concept so that future research may address how to prevent cavitation damage and better protect our soldiers," Adnan said. "I must thank ONR and Dr. Bentley for supporting this important research topic. I also would like to thank Texas Advanced Computing Center for providing computational facilities."

Adnan and Wu simulated a shock wave-induced cavitation collapse within the perineuronal net, which is a specialized extracellular matrix that stabilizes synapses in the brain. The team focused on the damage in hyaluronan, which is the net's main structural component. Their results show that the localized supersonic forces created by an asymmetrical bubble collapse may break the hyaluronan. This improves current knowledge and understanding of the connection between to the perineuronal net and neurodegenerative disorders.

Other members of Adnan's team are Fuad Hassan, Mahmud Hasan and Ishak Khan, all who are pursuing their doctoral research on topics related to injury biomechanics.

Adnan's work is related to another Office of Naval Research project led by Michael Cho, professor and chair of UTA's Bioengineering Department. Cho's research is supported by a $1.24 million Warfighter Performance Department grant and examines how shockwaves on the battlefield cause brain tissue injuries and compromise the blood-brain barrier.

Duane Dimos, UTA vice president for research, said both projects are advancing knowledge in the way physicians understand and diagnose brain injuries. The work is representative of UTA's increasing research expertise focused on advancing health and the human condition under the University's Strategic Plan 2020: Bold Solutions | Global Impact.

"Dr. Adnan's recently published findings offer important insight into how the brain is affected in combat scenarios," Dimos said. "Understanding the effects of blast injuries on the brain and knowing that cavitation occurs is an important step toward finding better ways to prevent traumatic brain injuries on the battlefield."

Explore further: Mouse study suggests how hearing a warning sound turns into fearing it over time

More information: Yuan-Ting Wu et al. Effect of Shock-Induced Cavitation Bubble Collapse on the damage in the Simulated Perineuronal Net of the Brain, Scientific Reports (2017). DOI: 10.1038/s41598-017-05790-3

Related Stories

Mouse study suggests how hearing a warning sound turns into fearing it over time

June 22, 2017
The music from the movie "Jaws" is a sound that many people have learned to associate with a fear of sharks. Just hearing the music can cause the sensation of this fear to surface, but neuroscientists do not have a full understanding ...

Sinister shock: Researcher studies how explosive shock waves harm the brain

February 23, 2016
Today's warfighters are outfitted with body armor strong enough to withstand shrapnel from a bomb or other explosive device. One debilitating threat from a blast, however, is a force they can't see—the explosive shock wave ...

Tiny bubbles offer sound solution for drug delivery

June 25, 2017
Your brain is armored. It lives in a box made of bones with a security system of vessels. These vessels protect the brain and central nervous system from harmful chemicals circulating in the blood. Yet this protection system—known ...

Study proves shock wave from explosives causes significant eye damage

June 30, 2014
Researchers at The University of Texas at San Antonio (UTSA) are discovering that the current protective eyewear used by our U.S. armed forces might not be adequate to protect soldiers exposed to explosive blasts.

Recommended for you

Research redefines proteins' role in the development of spinal sensory cells

September 19, 2017
A recent study led by Samantha Butler at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overturned a common belief about how a certain class of proteins in the spinal cord regulate ...

The brain at work: Spotting half-hidden objects

September 19, 2017
How does a driver's brain realize that a stop sign is behind a bush when only a red edge is showing? Or how can a monkey suspect that the yellow sliver in the leaves is a round piece of fruit?

Team discovers how to train damaging inflammatory cells to promote repair after stroke

September 19, 2017
White blood cells called neutrophils are like soldiers in your body that form in the bone marrow and at the first sign of microbial attack, head for the site of injury just as fast as they can to neutralize invading bacteria ...

Epileptic seizures show long-distance effects

September 19, 2017
The area in which an epileptic seizure starts in the brain, may be small but it reaches other parts of the brain at distances of over ten centimeters. That distant activity, in turn, influences the epileptic core, according ...

Study uncovers markers for severe form of multiple sclerosis

September 18, 2017
Scientists have uncovered two closely related cytokines—molecules involved in cell communication and movement—that may explain why some people develop progressive multiple sclerosis (MS), the most severe form of the disease. ...

Genetically altered mice bear some hallmarks of human bipolar behavior

September 18, 2017
Johns Hopkins researchers report they have genetically engineered mice that display many of the behavioral hallmarks of human bipolar disorder, and that the abnormal behaviors the rodents show can be reversed using well-established ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

gzurbay
not rated yet Jul 18, 2017
An interesting consideration, - I wonder if anyone has also considered the possible effect of the rise in pressure at the capillary level from the sharp pressure rise exerted on the body from the blast wave - I would cite a visual of the antique rubber dolls with the eyes that pop out when the child squeezed the body.... Repeat damage at that level would likely be cumulative to nerve process....

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.