Discovery-driven research leads to breakthrough in understanding rare Sengers syndrome

July 14, 2017 by Kathryn Powley, University of Melbourne
Credit: University of Melbourne

Melbourne researchers have unlocked important information that could lead to improved treatment of a rare and serious genetic condition.

Sengers syndrome is a genetic mitochondrial disease. Most children born with it die as babies, but a milder form of the disease also exists with some people surviving for multiple decades.

The new research, which involved a collaboration between the University of Melbourne's Bio21 Institute, the Murdoch Childrens Research Institute, Monash University and La Trobe University, uncovered an unexpected link between the gene that causes Sengers syndrome, AGK, and a cellular process referred to as " transport".

Professor David Thorburn's team identified changes in the AGK gene as the cause of Sengers syndrome in 2012. However, it was unclear how the expected of AGK led to the abnormal mitochondrial function they found in the two Australian patients identified at that time. Subsequently another 30 patients have been described internationally, most of whom suffer from severe heart disease and cataracts.

Dr Diana Stojanovski investigated the inner workings of AGK and what she found could lead to improved treatments and therapies for the incurable condition.

Dr Stojanovski explains that the mitochondrion is an organelle found in all cells of our bodies and considered the "powerhouse" of the cell, where the food we eat is metabolised into energy to sustain life and organ function. When mitochondria don't function properly organs fail and people get sick.

Mitochondria is bound by a double membrane with "gate-keepers" or "carrier proteins" embedded in the inner membrane that regulate which molecules and metabolites can enter.

The molecules that pass through these gate-keepers are needed for various important processes, such as the metabolism of fats and proteins for energy.

"Inside the mitochondria you have a number of tiny molecular machines that are responsible for assembling these gate-keeper molecules so they can do their job," Dr Stojanovski says.

"This is a highly tuned process. When these machines have faulty parts, then it can have severe effects on our metabolism, like what we see in Sengers sydnrome."

Dr Stojanovski's team found the AGK belonged to a molecular machine known as TIM22, which organises tunnel-like carrier proteins into the inner membrane, which then transport molecules into and out of the organelle.

This function was crucial for various processes, including energy production.

"Until this discovery Sengers syndrome was believed to be a defect of lipid metabolism in cells," Dr Stojanovski says. "Our work is paradigm-shifting and suggests defects in the process of leads to the disease."

Explore further: Researchers sniff out potential Leigh syndrome treatment

Related Stories

Researchers sniff out potential Leigh syndrome treatment

July 18, 2016
A mouse with dysfunctional mitochondria may hold the key to treating Leigh syndrome in humans.

Unravelling the genetic mystery behind mitochondrial disease

September 15, 2016
Researchers from the Monash Biomedicine Discovery Institute in Melbourne have identified two new genes linked to a major cause of mitochondrial disease. Their research opens the way for better genetic diagnosis of the disease ...

Unraveling the mystery of DNA attacks in cells' powerhouse could pave way for new cancer treatments

April 28, 2017
New research has unravelled the mystery of how mitochondria—the energy generators within cells—can withstand attacks on their DNA from rogue molecules.

Recommended for you

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

Team reports progress in pursuit of sickle cell cure

February 16, 2018
Scientists have successfully used gene editing to repair 20 to 40 percent of stem and progenitor cells taken from the peripheral blood of patients with sickle cell disease, according to Rice University bioengineer Gang Bao.

Appetite-controlling molecule could prevent 'rebound' weight gain after dieting

February 15, 2018
Scientists have revealed how mice control their appetite when under stress such as cold temperatures and starvation, according to a new study by Monash University and St Vincent's Institute in Melbourne. The results shed ...

First study of radiation exposure in human gut Organ Chip device offers hope for better radioprotective drugs

February 14, 2018
Chernobyl. Three Mile Island. Fukushima. Accidents at nuclear power plants can potentially cause massive destruction and expose workers and civilians to dangerous levels of radiation that lead to cancerous genetic mutations ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.