Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Beta-amyloid plaques from an AD mouse model. Pink represents beta-amyloid deposits (plaques), brown represents microglia cells and blue/purple is nuclei of neurons and glial cells. Credit: Stefan Prokop, MD, Perelman School of Medicine, University of Pennsylvania

Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, cells that are part of the brain's injury response system. The study is an international collaboration of four AD research consortia that analyzed DNA from 85,000 subjects. The results are reported online this week in Nature Genetics.

Studies of this type focus on identifying new therapeutic targets for treatment or prevention of AD, a goal of researchers world-wide. Genetic variation of the type described in this paper are "experiments of nature," of a sort, that reveal when a specific gene is altered, disease risk can be affected.

"This is direct evidence that if drugs can be designed to target these proteins, we have a chance to alter disease risk in people," said senior author Gerard Schellenberg, PhD, a professor of Pathology and Laboratory Medicine, and director of the Alzheimer Disease Genetics Consortium (ADGC) at the Perelman School of Medicine at the University of Pennsylvania. "It's been known for decades that microglia—a first-line-of-defense cell we are born with—surround amyloid plaque deposits associated with Alzheimer's. These multiple gene 'hits' all originating from microglia are the clearest demonstration that these cells are part of Alzheimer's pathology and, more importantly, provide clear protein targets where we can start to intervene with drugs."

The ADGC, supported by the National Institute on Aging (NIA) at the National Institutes of Health, is one of the four consortia of the International Genomics of Alzheimer's Project on this study. The others are Cohorts for Heart and Aging in Genomic Epidemiology (CHARGE), European Alzheimer's Disease Initiative (EADI), and Genetic and Environmental Risk in Alzheimer's Disease (GERAD).

The variants the team found—PLCG2, ABI3, and TREM2—are all protein-coding mutations in genes that are highly expressed in microglia and are part of an immune cell protein network where multiple components contribute to AD risk. One of the genes, PLCG2, is an enzyme that is a potential drug target.

Key questions remain in how microglia should be targeted and whether the injury response should be inhibited or activated and at what stage of disease. "Since prevention is a key goal of therapy, influencing microglial cells before onset of cognitive changes needs to be explored," Schellenberg said.

The three variants they identified are fairly rare and he accounts for their success in finding them to their three-stage study. In the first stage, the entire protein coding regions of 34,290 samples were sequenced. In the second and third stages, the team further refined the sequences of variants and verified the significant hits against untested samples from AD patients.

"Our findings show that microglia and the innate immune system—via microglia—directly contribute to susceptibility of late-onset Alzheimer's disease, and are not just a down-stream 'after-the-fact' consequence of damage to the brain," Schellenberg said.

Explore further: 'Pac-Man' gene implicated in Alzheimer's disease

More information: Rebecca Sims et al, Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease, Nature Genetics (2017). DOI: 10.1038/ng.3916

Related Stories

'Pac-Man' gene implicated in Alzheimer's disease

July 26, 2016
A gene that protects the brain from the harmful build-up of amyloid-beta, one of the causative proteins implicated in Alzheimer's disease, has been identified as a new target for therapy by NeuRA researchers.

Skin stem cells used to generate new brain cells

April 25, 2017
Using human skin cells, University of California, Irvine neurobiologists and their colleagues have created a method to generate one of the principle cell types of the brain called microglia, which play a key role in preserving ...

Abnormal brain protein may contribute to Alzheimer's disease development

September 30, 2016
A recently-recognized pathologic protein in the brain may play a larger role in the development of clinical Alzheimer's disease dementia than previously recognized, according to a study by researchers at Rush University Medical ...

Early signs of Alzheimer's disease identified

December 6, 2016
Researchers from the University of Aberdeen have detected key changes in the brains of people with Alzheimer's disease.

Hayling Island scientist sheds light on factors driving Alzheimer's

January 23, 2017
Cassidy Fiford, a native of Hayling Island and a PhD student at University College London, has celebrated after making a discovery showing that damage to blood vessels in the brain can drive shrinking of the hippocampus, ...

New approaches to understanding Alzheimer's and Parkinson's disease

July 26, 2016
In a study presented today at the Alzheimer's Association International Conference 2016, researchers at the Douglas Mental Health University Institute have explored how some people may develop the hallmarks of Alzheimer's ...

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.