Researchers discover region of male mice brain involved in asserting dominance

July 14, 2017 by Bob Yirka report
Credit: CC0 Public Domain

(Medical Xpress)—A team of researchers affiliated with several institutions in China has located a part of the brain in male mice that appears to play a key role in dominance behavior with other male mice. In their paper published in the journal Science, the team describes experiments they carried out with mice using brain scans, optogenetics and plastic tubes.

Mice are known to be social animals, and prior research has shown that dominance plays a role in maintaining social order—dominance levels lead to establishment of hierarchies, which helps to maintain peace within communities. While size has been shown to play a role in dominance in mice, prior research has determined that some behaviors, particularly persistence, play an even stronger role. In this new effort, the researchers sought to learn more about what goes on in the male mouse brain when males are forced into a situation in which dominant behavior is encouraged.

The experiments consisted of monitoring the brain waves of mice as they performed a standard dominance test—two male mice were placed nose-to-nose into a clear tube that did not leave enough room to turn around or pass by one another. The only way out was for one to concede and walk backwards to the end of the tube and exit. In so doing, the researchers found that the dorsomedial prefrontal cortex (dmPFC) was more active in the mouse that won such contests. More specifically, they found that when performing such actions as initiating a push, pushing back against a push or resisting, the dmPFC was more active. Conversely, during such activities as retreating, the same region was less active than it was for the one showing dominance.

The video will load shortly.
Researchers measure social dominance in mice by analyzing how much each one pushes, pushes back, retreats or remains still. Credit: Zhou et al., Science (2017)

After testing several mice, the team was able to identify which mice were more dominant—they then quashed that dominance by giving the mice a drug known to quiet the dmPFC, suggesting that they had found the correct region of the brain responsible for controlling dominance. The researchers then used optogenetics to stimulate the dmPFC in less dominant mice and found that doing so caused those mice to become more dominant—an effect that lasted for at least a whole day after photo-stimulation ceased. The researchers report that they plan to continue their research to learn if the same part of the is involved in for female .

The video will load shortly.
When scientists stimulated a subset of neurons in the dorsomedial prefrontal cortex, this dramatically increased the chances that a mouse will be socially dominant over a mouse that does not receive the stimulation. Credit: Zhou et al., Science (2017)

Explore further: Researchers uncover brain circuitry central to reward-seeking behavior

More information: History of winning remodels thalamo-PFC circuit to reinforce social dominance, Science  14 Jul 2017: Vol. 357, Issue 6347, pp. 162-168 , DOI: 10.1126/science.aak9726

Abstract
Mental strength and history of winning play an important role in the determination of social dominance. However, the neural circuits mediating these intrinsic and extrinsic factors have remained unclear. Working in mice, we identified a dorsomedial prefrontal cortex (dmPFC) neural population showing "effort"-related firing during moment-to-moment competition in the dominance tube test. Activation or inhibition of the dmPFC induces instant winning or losing, respectively. In vivo optogenetic-based long-term potentiation and depression experiments establish that the mediodorsal thalamic input to the dmPFC mediates long-lasting changes in the social dominance status that are affected by history of winning. The same neural circuit also underlies transfer of dominance between different social contests. These results provide a framework for understanding the circuit basis of adaptive and pathological social behaviors.

Related Stories

Researchers uncover brain circuitry central to reward-seeking behavior

February 22, 2017
The prefrontal cortex, a large and recently evolved structure that wraps the front of the brain, has powerful "executive" control over behavior, particularly in humans. The details of how it exerts that control have been ...

Social hierarchy prewired in the brain

September 30, 2011
(PhysOrg.com) -- If you find yourself more of a follower than a social leader, it may something to do with the wiring in your brain. According to a new study in Science, researchers from the Chinese Academy of Science have ...

Researchers find chemicals and neurons responsible for turning parental care on and off in mice

May 15, 2014
A team of researchers working at Harvard University has found that a certain type of neuron in a certain part of the mouse brain is responsible for governing parental behavior. In their paper published in the journal Nature, ...

Study suggests virgin male mice prefer watching violence to watching sex

February 15, 2016
(Phys.org)—A trio of researchers working in Japan has found via experiments they conducted, that male virgin mice prefer to watch videos of other mice fighting with one another, than videos of mice having sex. In their ...

Recommended for you

Theory: Flexibility is at the heart of human intelligence

November 19, 2017
Centuries of study have yielded many theories about how the brain gives rise to human intelligence. Some neuroscientists think intelligence springs from a single region or neural network. Others argue that metabolism or the ...

Investigating patterns of degeneration in Alzheimer's disease

November 17, 2017
Alzheimer's disease (AD) is known to cause memory loss and cognitive decline, but other functions of the brain can remain intact. The reasons cells in some brain regions degenerate while others are protected is largely unknown. ...

Study may point to new treatment approach for ASD

November 17, 2017
Using sophisticated genome mining and gene manipulation techniques, researchers at Vanderbilt University Medical Center (VUMC) have solved a mystery that could lead to a new treatment approach for autism spectrum disorder ...

Neuroscientists find chronic stress skews decisions toward higher-risk options

November 16, 2017
Making decisions is not always easy, especially when choosing between two options that have both positive and negative elements, such as deciding between a job with a high salary but long hours, and a lower-paying job that ...

Paraplegic rats walk and regain feeling after stem cell treatment

November 16, 2017
Engineered tissue containing human stem cells has allowed paraplegic rats to walk independently and regain sensory perception. The implanted rats also show some degree of healing in their spinal cords. The research, published ...

Brain implant tested in human patients found to improve memory recall

November 15, 2017
(Medical Xpress)—A team of researchers with the University of Southern California and the Wake Forest School of Medicine has conducted experiments involving implanting electrodes into the brains of human volunteers to see ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.