Why drugs don't reach cancer cells: Researchers develop technology to provide answers

August 9, 2017
From left to right, PhD candidates Abdullah Syed and Shrey Sindhwani discuss their findings with Professor Warren Chan. Credit: Neil Ta

For cancer patients, understanding the odds of a treatment's success can be bewildering.

The same , applied to the same type of cancer, might be fully successful for one person's tumour and do nothing for someone else. Physicians are often unable to explain why.

Now, University of Toronto researchers are beginning to understand one of the reasons. Biomedical engineering students Abdullah Syed and Shrey Sindhwani, and colleagues at the Institute of Biomaterials & Biomedical Engineering (IBBME), have created to watch nanoparticles entering into tumours – revealing barriers that prevent their delivery to targets and the variability between cancers.

"The biggest thing we've noticed is that nanoparticles face multiple challenges posed by the tumour itself on their way to ," says Sindhwani, an MD-PhD student working with Professor Warren Chan of IBBME. Syed and Sindhwani co-published their findings online and on the cover of the Journal of the American Chemical Society.

"So the treatment might work for a while – or worse, there's just enough of the drug for the cancer to develop resistance. This could be prevented if we can figure out the ways in which these barriers stop delivery and distribution of the drug throughout the cancer."

Tiny "nanoparticles" offer great hope for the treatment of cancer and other diseases because of their potential to deliver drugs to targeted areas in the body, allowing more precise treatments with fewer side-effects. But so far the technology hasn't lived up to its promise, due to delivery and penetration problems.

To dismantle this roadblock, the two graduate students searched for a way to better view the particle's journey inside tumours. They discovered that the tough-to-see particles could be illuminated by scattering light off their surfaces.

"The sensitivity of our imaging is about 1.4 millionfold higher," says Syed. "First, we make the tissue transparent, then we use the signal coming from the particles to locate them. We shine a light on the particles, and it scatters the light. We capture this scattering light to learn the precise location of the nanoparticles."

It was already understood that nanoparticles were failing to accumulate in tumours, thanks to a meta-analysis of the field done by researchers at U of T. But the researchers have developed technologies to look at nanoparticle distribution in 3-D, which provides a much fuller picture of how the particles are interacting with the rest of the tumour biology.

"The goal is to use this technology to gather knowledge for developing mathematical principles of nanoparticle distribution in cancer, similar to the way principles exist for understanding the function of the heart," says Syed.

And because each tumour is unique, this technology and knowledge base should help future scientists to understand the barriers to drug delivery on a personalized basis and to develop custom treatments.

The next step is to understand what, in cancer's biology, stops particles from fully penetrating tumours – and then to develop ways to bypass cancer's defences.

But the technology is also useful for diseases other than . With the help of Professor Jennifer Gommerman, a multiple sclerorsis researcher in the department of immunology, Syed and Sindhwani captured 3-D images of lesions in a mouse model mimicking multiple sclerosis using .

"This is going to be very valuable to anyone trying to understand disease or the organ system more deeply," says Sindhwani.

Syed adds: "And once we understand barriers that don't allow drugs to reach their disease site, we can start knocking them down and improving patient health."

Explore further: New nanotechnology application for difficult-to-treat cancers

More information: Abdullah Muhammad Syed et al. Three-Dimensional Imaging of Transparent Tissues via Metal Nanoparticle Labeling, Journal of the American Chemical Society (2017). DOI: 10.1021/jacs.7b04022

Related Stories

New nanotechnology application for difficult-to-treat cancers

May 10, 2017
A new treatment combining shock waves with nanoparticles can successfully treat tumours that are difficult to target using conventional chemotherapy. This is the first time this combined therapy has been tested in live animals. ...

Tumor-trained T cells go on patrol

May 15, 2017
'Tumour-trained' immune cells - which have the potential to kill cancer cells - have been seen moving from one tumour to another for the first time. The new findings, which were uncovered by scientists at Australia's Garvan ...

Cancer cells take up nanoparticles more rapidly than normal brain cells

December 17, 2015
New research carried out by drug delivery experts at The University of Nottingham has highlighted more advantages to using nanoparticles for the delivery of cancer drugs.

Recommended for you

Scientists develop blood test that spots tumor-derived DNA in people with early-stage cancers

August 16, 2017
In a bid to detect cancers early and in a noninvasive way, scientists at the Johns Hopkins Kimmel Cancer Center report they have developed a test that spots tiny amounts of cancer-specific DNA in blood and have used it to ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Popular immunotherapy target turns out to have a surprising buddy

August 16, 2017
The majority of current cancer immunotherapies focus on PD-L1. This well studied protein turns out to be controlled by a partner, CMTM6, a previously unexplored molecule that is now suddenly also a potential therapeutic target. ...

A metabolic treatment for pancreatic cancer?

August 15, 2017
Pancreatic cancer is now the third leading cause of cancer mortality. Its incidence is increasing in parallel with the population increase in obesity, and its five-year survival rate still hovers at just 8 to 9 percent. Research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.