How to trick your heart into thinking you exercise

August 8, 2017
The far right image shows how a cardiotrophin treatment repaired heart muscle after a heart attack in a rat model. The blue areas are scar tissue and the red sections are healthy heart muscle. Credit: Cell Research

Researchers have discovered that a protein called cardiotrophin 1 (CT1) can trick the heart into growing in a healthy way and pumping more blood, just as it does in response to exercise and pregnancy. They show that this good kind of heart growth is very different from the harmful enlargement of the heart that occurs during heart failure. They also show that CT1 can repair heart damage and improve blood flow in animal models of heart failure. The results are published in Cell Research. The research team is from The Ottawa Hospital, the University of Ottawa, the University of Ottawa Heart Institute and Carleton University.

Heart is a leading cause of death and disability in high-income countries and a growing problem around the world. It occurs when the heart can't pump enough through the body, often because a has damaged the tissue.

"When part of the heart dies, the remaining muscles try to adapt by getting bigger, but this happens in a dysfunctional way and it doesn't actually help the heart pump more blood," said Dr. Lynn Megeney, senior author of the study and a senior scientist at The Ottawa Hospital and professor at the University of Ottawa. "We found that CT1 causes heart muscles to grow in a more healthy way and it also stimulates blood vessel growth in the heart. This actually increases the heart's ability to pump blood, just like what you would see with exercise and pregnancy."

Dr. Megeney and his colleagues conducted a variety of studies in mice, rats and cells growing in the lab. In addition to CT-1, some of the studies involved a drug called phenylephrine (PE), which is known to cause the bad kind of heart growth. They found:

  • Heart muscle cells treated with CT-1 become longer, healthier fibres, while those treated with PE just grow wider.
  • CT-1 causes blood vessels to grow alongside the new and increases the heart's ability to pump blood, while PE does neither.
  • When CT-1 treatment stops, the heart goes back to its original condition, just like it does when exercise or pregnancy end. However, the dysfunctional heart growth caused by PE is irreversible.
  • CT-1 dramatically improves heart function in two animal models of - one caused by a heart attack (affecting the left side of the heart) and one caused by high blood pressure in the lungs (pulmonary hypertension, affecting the right side of the heart).
  • Both CT-1 and PE stimulate heart muscle growth through a molecular pathway that has traditionally been associated with promoting cell suicide (apoptosis), but CT-1 has a better ability to control this pathway.
Cardiotrophin 1 stimulates a good kind of heart muscle growth, generating long healthy fibres (right panel). Heart disease causes an unhealthy kind of heart muscle growth, similar to what is seen with phenylephrine treatment (middle panel). Credit: Cell Research

"This experimental therapy is very exciting, particularly because it shows promise in treating both left and right heart failure," said Dr. Duncan Stewart, a cardiologist, senior scientist and co-senior author on the paper who is also Executive Vice-President of Research at The Ottawa Hospital and a professor at the University of Ottawa. "Currently, the only treatment for right heart failure is a transplant. And although we have drugs that can reduce the symptoms of left heart failure, we can't fix the problem, and left heart failure often leads to right heart failure over time."

"An intriguing aspect of this research was how human CT1 was able to promote a healthy growth response in multiple animal models," said co-author Dr. Patrick Burgon, scientist at the University of Ottawa Heart Institute and assistant professor at the University of Ottawa. "This suggests the action of CT1 is universally conserved and puts us much closer to therapy."

The researchers also note that while exercise could theoretically have the same benefits as CT-1, people with heart failure are usually limited in their ability to exercise.

Dr. Megeney and Dr. Stewart have patents pending for the use of CT-1 to treat conditions and they hope to develop partnerships to test this protein in patients. If this testing is successful it will take a number of years for the treatment to become widely available.

Explore further: Study examines altered gene expression in heart failure

More information: Mohammad Abdul-Ghani et al. Cardiotrophin 1 stimulates beneficial myogenic and vascular remodeling of the heart, Cell Research (2017). DOI: 10.1038/cr.2017.87

Related Stories

Study examines altered gene expression in heart failure

August 4, 2017
Heart failure refers to a condition in which heart muscle becomes weakened over time, making it increasingly difficult for the heart to pump blood through the body like it should.

Many adults have insufficient knowledge about heart failure

March 22, 2017
In the largest German survey on heart failure to date, investigators found that the overall awareness of heart failure has not increased over the past decade and is not at a satisfactory level.

Diabetes may have important effects in patients with acute heart failure

June 26, 2017
Researchers have found that patients with acute heart failure and diabetes, compared with those without diabetes, have distinct markers related to inflammation, cardiovascular function, and kidney health.

Stem cell patch shows early promise in treating heart failure

April 5, 2017
Patching a damaged heart with a patient's own muscle stem cells improves symptoms of heart failure, according to a Phase I clinical trial reported in Journal of the American Heart Association, the Open Access Journal of the ...

Scientists identify protein linked to chronic heart failure

May 26, 2017
Researchers in Japan have identified a receptor protein on the surface of heart cells that promotes chronic heart failure. The study, "Corticotropin releasing hormone receptor 2 exacerbates chronic cardiac dysfunction," which ...

New research sheds light on abnormal heart muscle thickening and potential treatment

October 7, 2013
While most people would consider a big heart to be a good thing, for heart disease experts, it is often a sign of serious disease. Now, Dr. Lynn Megeney of the Ottawa Hospital Research Institute (OHRI) and the University ...

Recommended for you

How genes and environment interact to raise risk of congenital heart defects

October 19, 2017
Infants of mothers with diabetes have a three- to five-fold increased risk of congenital heart defects. Such developmental defects are likely caused by a combination of genetic and environmental factors. However, the molecular ...

Mouse studies shed light on how protein controls heart failure

October 18, 2017
A new study on two specially bred strains of mice has illuminated how abnormal addition of the chemical phosphate to a specific heart muscle protein may sabotage the way the protein behaves in a cell, and may damage the way ...

Newborns with trisomy 13 or 18 benefit from heart surgery, study finds

October 18, 2017
Heart surgery significantly decreases in-hospital mortality among infants with either of two genetic disorders that cause severe physical and intellectual disabilities, according to a new study by a researcher at the Stanford ...

Saving hearts after heart attacks: Overexpression of a gene enhances repair of dead muscle

October 17, 2017
University of Alabama at Birmingham biomedical engineers report a significant advance in efforts to repair a damaged heart after a heart attack, using grafted heart-muscle cells to create a repair patch. The key was overexpressing ...

Physically active white men at high risk for plaque buildup in arteries

October 17, 2017
White men who exercise at high levels are 86 percent more likely than people who exercise at low levels to experience a buildup of plaque in the heart arteries by middle age, a new study suggests.

High blood pressure linked to common heart valve disorder

October 17, 2017
For the first time, a strong link has been established between high blood pressure and the most common heart valve disorder in high-income countries, by new research from The George Institute for Global Health at the University ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.