Researchers identify neurons that control brain's body clock

August 3, 2017, University of Virginia
Credit: CC0 Public Domain

Neurons in the brain that produce the pleasure-signaling neurotransmitter dopamine also directly control the brain's circadian center, or "body clock" - the area that regulates eating cycles, metabolism and waking/resting cycles - a key link that possibly affects the body's ability to adapt to jet lag and rotating shift work, a new University of Virginia study has demonstrated.

The finding is reported in today's online edition of the journal Current Biology.

"This discovery, which identifies a direct dopamine neuron connection to the circadian center, is possibly the first step toward the development of unique drugs, targeting specific , to combat the unpleasant symptoms of jet-lag and shiftwork, as well as several dangerous pathologies," said Ali Deniz Güler, a UVA professor of biology and neuroscience who oversaw the study in his lab.

Modern society often places abnormal pressure on the human body—from shifting time schedules due to air travel, to work cycles that don't conform to natural light, to odd eating times—and these external conditions create an imbalance in the body's natural cycles, which are evolutionarily synchronized to day and night. These imbalances may contribute to depression, obesity, cardiovascular diseases and even cancer.

"Scientists have been working for decades to help the body's circadian system readily re-synchronize to variable work and eating schedules and flights across multiple time zones," Güler said. "Finding this connection between and the circadian center allows us to target these neurons with therapies that could potentially provide relief of symptoms for travelers and shift workers particularly, and possibly people with insomnia."

Sleep disorders and abnormal circadian rhythms affecting the brain and other organs can worsen many pathologies involving aberrant dopamine neurotransmission, Güler said, including Parkinson's disease, depression, attention deficit/hyperactivity disorder, bipolar disorder, schizophrenia and drug addiction.

"New understanding of dopamine-producing neurons and the connection to the body's biorhythms may go a long way toward treatments to alleviate the harmful effects of these serious pathologies," Güler said.

Güler's laboratory specializes in identifying neural circuits that govern in the brain, providing unique therapeutic targets for a range of diseases. Ph.D. candidate Ryan Grippo, Güler's graduate student, led the Current Biology study.

The researchers used two types of mice in their investigation: one normal, the other with dopamine signaling disrupted. By shifting the light schedules of the two groups by six hours, a jet-lag effect, they found that the dopamine-disrupted animals took much longer to resynchronize to the six-hour time shift, indicating feedback between the and the circadian center.

"This shows that when we engage in rewarding activities like eating, we are inadvertently affecting our biological rhythms," Güler said. "We may have found the missing link to how pleasurable things and the circadian system influence one another."

Explore further: Researchers uncover how dopamine transports within the brain

More information: Current Biology (2017). DOI: 10.1016/j.cub.2017.06.084

Related Stories

Researchers uncover how dopamine transports within the brain

January 25, 2016
Researchers at University of Florida Health have discovered the mechanics of how dopamine transports into and out of brain cells, a finding that could someday lead to more effective treatment of drug addictions and neurological ...

Intracellular dopamine receptor function may offer hope to schizophrenia patients

December 9, 2016
Dopamine is a chemical in the brain that plays an important role in controlling movement, emotion and cognition. Dopamine dysfunction is believed to be one of the causes of disorders like Schizophrenia, Tourette's syndrome, ...

Conversion of brain cells offers hope for Parkinson's patients

April 11, 2017
Researchers at Karolinska Institutet have made significant progress in the search for new treatments for Parkinson's disease. By manipulating the gene expression of non-neuronal cells in the brain, they were able to produce ...

Disrupting the brain's internal clock causes depressive-like behavior in mice

November 29, 2016
Disruptions of daily rhythms of the body's master internal clock cause depression- and anxiety-like behaviors in mice, reports a new study in Biological Psychiatry. The findings provide insight into the role of the brain's ...

Recommended for you

How social isolation transforms the brain

May 17, 2018
Chronic social isolation has debilitating effects on mental health in mammals—for example, it is often associated with depression and post-traumatic stress disorder in humans. Now, a team of Caltech researchers has discovered ...

Researchers crowdsource brain mapping with gamers, discover six new neuron types

May 17, 2018
With the help of a quarter-million video game players, Princeton researchers have created and shared detailed maps of more than 1,000 neurons—and they're just getting started.

New study sheds light on brain's ability to orchestrate movement

May 17, 2018
To carry out any action, whether playing the piano or dancing the jitterbug, the brain must select and string together a series of small, discrete movements into a precise, continuous sequence.

Cannabidiol significantly reduces seizures in patients with severe form of epilepsy

May 17, 2018
Cannabidiol (CBD), a compound derived from the cannabis plant that does not produce a "high" and has been an increasing focus of medical research, was shown in a new large-scale, randomized, controlled trial to significantly ...

Learning music or speaking another language leads to more efficient brains

May 17, 2018
Whether you learn to play a musical instrument or speak another language, you're training your brain to be more efficient, suggests a Baycrest study.

Old drug provides promising new avenue for treatment of MND

May 17, 2018
An international study led by biochemists at the University of Liverpool has shown that the drug-molecule ebselen can correct many of the toxic characteristics of a protein that causes some cases of hereditary motor neurone ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.