Diabetes and heart disease linked by genes, study reveals

September 4, 2017
Credit: CC0 Public Domain

Type 2 diabetes (T2D) has become a global epidemic affecting more than 380 million people worldwide; yet there are knowledge gaps in understanding the etiology of type-2 diabetes. T2D is also a significant risk factor for coronary heart disease (CHD), but the biological pathways that explain the connection have remained somewhat murky. Now, in a large analysis of genetic data, published on August 28, 2017 in Nature Genetics, a team, led by researchers in the Perelman School of Medicine at the University of Pennsylvania, has first looked into what causes T2D and second clarified how T2D and CHD - the two diseases that are the leading cause of global morbidity and mortality, are linked.

Examining genome sequence information for more than 250,000 people, the researchers first uncovered 16 new diabetes genetic risk factors, and one new CHD genetic risk factor; hence providing novel insights about the mechanisms of the two diseases. They then showed that most of the sites on the genome known to be associated with higher diabetes risk are also associated with higher CHD risk. For eight of these sites, the researchers were able to identify a specific that influences risk for both diseases. The shared affect biological pathways including immunity, cell proliferation, and heart development.

The findings add to the basic scientific understanding of both these major diseases and point to potential targets for future drugs.

"Identifying these gene variants linked to both type 2 diabetes and CHD risk in principle opens up opportunities to lower the risk of both outcomes with a single drug," said study co-senior author Danish Saleheen, PhD, an assistant professor of Biostatistics and Epidemiology. "From a drug development perspective, it would make sense to focus on those pathways that are most strongly linked to both diseases," Saleheen said.

The researchers started by examining sets of genome data on more than 250,000 people, of South Asian, East Asian or European descent. In this large, multi-ethnic sample they were able to confirm most of the known diabetes "risk loci"— sites on the genome where small DNA variations have been linked to altered, usually higher, diabetes risk—and uncover 16 new ones.

With their analyses of the genome data, the scientists were also able to identify eight specific gene variants that are strongly linked to altered risk for both diseases. Seven of these gene variants, as expected, appeared to increase risk for both diseases.

The eighth, a variant of the gene for the cholesterol-transport protein ApoE, turned out to be associated with higher diabetes risk but lower CHD risk—a finding that is somewhat puzzling, Saleheen said, though he noted that it is consistent with data from statin trials showing that pharmacologically lowering LDL cholesterol can modestly increase diabetes risk.

The researchers found evidence that, on the whole, the genetic link between the diseases appears to work in one direction, so that risk for type 2 diabetes are much more likely to be associated with higher CHD risk than the other way around. Additionally, there could be some pathways where pharmacological lowering of one disease increases the risk of the other.

"Using evidence from human genetics, it should be possible to design drugs for type-2 diabetes that have either beneficial or neutral effects on CHD risk; however it is important to identify and further de-prioritize pathways that decrease the risk of type-2 diabetes but increase the risk of CHD"; said Saleheen.

The scientists also found that diabetes-linked gene variants tend to differ in their apparent effects on CHD risk, depending on their mechanisms. Variants that increase the chance of obesity or high blood pressure, for example, appear to boost CHD risk more strongly than variants that alter insulin or glucose levels.

The scientists discovered that the genomic regions implicated as dual diabetes-CHD risk loci encompass targets of some existing drugs. One such drug is icosapent, an omega-3 fatty acid component of some fish oils, which lowers cholesterol and is sold in concentrated form as a prescription pharmaceutical.

The dual-effect risk loci also include the region covering the gene FABP4, which is already being investigated for its potential as a diabetes and heart-disease drug target. In mouse studies, inhibition of this gene's protein has been shown to have anti-atherosclerotic, i.e., helps fight thickening and hardening with fat on the inside of arteries and anti-diabetic effects.

Saleheen, co-senior author Benjamin F. Voight, PhD, an associate professor of Genetics, and their colleagues now plan further investigations of the dual-risk genes uncovered in the study.

"I'm hopeful that with the advanced genomic engineering techniques now available, we'll be able to quickly convert our human genetics observations into concrete details regarding the molecular mechanisms involved in both heart disease and ," said Voight.

The researchers also hope to learn more about the biology of the newly discovered dual-risk genes by studying people who have mutations in those genes, Saleheen said.

Explore further: New heart disease risk genes point to flaws in blood vessel walls

More information: Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease, Nature Genetics (2017). DOI: 10.1038/ng.3943

Related Stories

New heart disease risk genes point to flaws in blood vessel walls

May 22, 2017
Coronary artery disease (CAD) is a leading cause of death worldwide. Despite dozens of regions in the genome associated with CAD, most of the genetic components of heart disease are not fully understood, suggesting that more ...

Exposure to LDL-C-lowering genetic variants ups T2DM risk

October 7, 2016
(HealthDay)—Low-density lipoprotein cholesterol (LDL-C)-lowering genetic variants are associated with increased risk of type 2 diabetes, according to a meta-analysis published in the Oct. 4 issue of the Journal of the American ...

Gene variants associated with body shape increase risk of heart disease, type 2 diabetes

February 14, 2017
A study from Massachusetts General Hospital (MGH) researchers has found that a pattern of gene variants associated with an "apple-shaped" body type, in which weight is deposited around the abdomen, rather than in the hips ...

Routinely measured lipids show contrasting associations with risk of coronary artery disease, diabetes

August 3, 2016
An analysis using genetics finds that increased low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and possibly triglyceride (TG) levels are associated with a lower risk of diabetes, ...

Risk of cardiovascular disease and diabetes affected by PCSK9 and HMGCR genetic variations

November 30, 2016
In a new study published in the December 1, 2016 issue of The New England Journal of Medicine (NEJM), researchers at Brigham and Women's Hospital, and a collaboration of international researchers, studied variants in the ...

Using human genetics to reveal fundamental processes involved in type 2 diabetes

November 9, 2015
Researchers at Oxford and Liverpool universities have identified genetic markers that could be used to understand people's risk of developing type 2 diabetes. Their work is published in Nature Genetics today.

Recommended for you

Scientists first to use genetic engineering technique to investigate Tourette's

September 25, 2017
Scientists at Rutgers University-New Brunswick are the first to use a genetic engineering technique to create brain cells from the blood cells of individuals in a three-generation family with Tourette syndrome to help determine ...

Newly revealed autism-related genes include genes involved in cancer

September 25, 2017
The identification of genes related to autism spectrum disorder (ASD) could help to better understand the disorder and develop new treatments. While scientists have found many genetic differences in different people with ...

Study reveals an ancient Achilles heel in the human genome

September 21, 2017
In a major study published today, researchers at deCODE genetics use whole-genome data from 14,000 people from across the population of Iceland, including 1500 sets of parents and children, to provide the most detailed portrait ...

Forgotten strands of DNA initiate the development of immune cells

September 21, 2017
Intricate human physiological features such as the immune system require exquisite formation and timing to develop properly. Genetic elements must be activated at just the right moment, across vast distances of genomic space.

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.