New inhibitor brings new hope

September 14, 2017
A breast cancer stem cell line 1 (BCSC1) from the newly established cell model. Here we can see the proteins keratin 5 in green and keratin 8 in red, with the nucleus in blue. Credit: Maurer Lab

Scientists from the cluster of excellence BIOSS Centre for Biological Signalling Studies at the University of Freiburg and the Freiburg University Medical Center have shown that inhibiting the epigenetic regulator KDM4 might offer a potential novel treatment option for breast cancer patients. They used a newly established cell model that enables scientists to isolate cancer stem cells directly from patient tumor. Using this special culture system, they were able to test potential new cancer drugs. One of these, a novel inhibitor of the epigenetic regulator KDM4, co-developed in the lab of Prof. Schüle, showed promising results. The researchers now published their work in the scientific journal Cancer Research.

Although the prognosis for has been steadily improving in the last decades, patients with triple receptor-negative breast cancer form a subgroup who receive a considerably worse prognosis in most cases. Roughly 15 percent of all breast cancer patients have triple receptor-negative breast cancer, which lacks markers for a targeted therapy. In the last few years, a bulk of data pointing to a small population of cells in tumors that maintain tumor growth, are particularly resistant to chemotherapy, are responsible for relapses, and develop metastases. These cells, named cancer stem-like cells, share many characteristics with the body's normal stem cells. Due to their cancer-driving behavior, researchers have been focusing more and more on targeting these cells. However, there are currently only a few models available to study the biology of cancer stem cells.

Scientists from the University of Freiburg's new Center for Translational Cell Research have developed a model that allows scientists to isolate cancer stem cells from tumors obtained from , thereby making biochemical and molecular analysis much more feasible. Dr. Jochen Maurer and his research group were able to cultivate several lines from triple receptor-negative breast cancer that are excellent representations of the original tumors they isolated from the patients.

In collaboration with Prof. Dr. Roland Schüle and his team at the Center of Clinical Research of the Freiburg University Medical Center, the scientists were able to test several epigenetic inhibitors that had been newly developed by Schüle and his team on the cancer stem cell model. Epigenetics relates to the regulation of genes without involving changes in the DNA sequence and is regarded as one of the most important issues of the 21st century. It is believed that epigenetics play a huge role in the development and progression of cancer.

Schüle and his team have already conducted well-known studies on the epigenetic regulator LSD1. Now, they have discovered that an inhibitor of the epigenetic regulator KDM4 shows great promise in modulating cancer stem cell pathology. They were able to block proliferation of several cancer stem cell lines. In addition, the KDM4 inhibitor induces a change of the molecular make-up of the stem and drives them out of stemness. Finally, they were also able to reduce growth in their first in vivo xenograft analysis.

Explore further: ONC201 may inhibit cancer stem cell self-renewals by altering their gene expression

More information: Eric Metzger et al, KDM4 inhibition targets breast cancer stem-like cells, Cancer Research (2017). DOI: 10.1158/0008-5472.CAN-17-1754

Related Stories

ONC201 may inhibit cancer stem cell self-renewals by altering their gene expression

August 2, 2017
ONC201 may inhibit cancer stem cell self-renewals by altering their gene expression, according to a study published August 2, 2017 in the open-access journal PLOS ONE by Varun Vijay Prabhu from Oncoceutics, Inc., USA and ...

Researchers identify novel treatment for aggressive form of breast cancer

May 23, 2016
A recent study by researchers at Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine revealed that triple-negative breast cancer (TNBC), which has generally been unresponsive to hormone ...

Study identifies potential combination therapy for ovarian cancer

October 28, 2016
A new study has identified an effective combination therapy for treating ovarian cancer cells.

Scientists identify chain reaction that shields breast cancer stem cells from chemotherapy

February 22, 2017
Working with human breast cancer cells and mice, researchers at Johns Hopkins say they have identified a biochemical pathway that triggers the regrowth of breast cancer stem cells after chemotherapy.

Two known chemotherapy agents effectively target breast cancer stem cells

May 2, 2016
Two existing chemotherapy drugs appear to be a powerful pair in targeting errant stem cells that are making breast cancer and enabling its spread and recurrence, scientists report.

Looking beyond cancer cells to understand what makes breast cancer spread

February 16, 2017
To understand what makes breast cancer spread, researchers are looking at where it lives - not just its original home in the breast but its new home where it settles in other organs. What's happening in that metastatic niche ...

Recommended for you

Targeted antibiotic use may help cure chronic myeloid leukaemia

September 19, 2017
The antibiotic tigecycline, when used in combination with current treatment, may hold the key to eradicating chronic myeloid leukaemia (CML) cells, according to new research.

Brain powered: Increased physical activity among breast cancer survivors boosts cognition

September 19, 2017
It is estimated that up to 75 percent of breast cancer survivors experience problems with cognitive difficulties following treatments, perhaps lasting years. Currently, few science-based options are available to help. In ...

Researchers compose guidelines for handling CAR T cell side effects

September 19, 2017
Immune-cell based therapies opening a new frontier for cancer treatment carry unique, potentially lethal side effects that provide a new challenge for oncologists, one addressed by a team led by clinicians at The University ...

Bone marrow protein a 'magnet' for passing prostate cancer cells

September 19, 2017
Scientists at the University of York have shown that a protein in the bone marrow acts like a 'magnetic docking station' for prostate cancer cells, helping them grow and spread outside of the prostate.

Brain cancer breakthrough could provide better treatment

September 19, 2017
A new discovery about the most common type of childhood brain cancer could transform treatment for young patients by enabling doctors to give the most effective therapies.

A new paradigm for treating transcription factor-driven cancers

September 18, 2017
In the current issue of Proceedings of the National Academy of Sciences, researchers from Nationwide Children's Hospital describe a new paradigm for treating transcription factor-driven cancers. The study focuses on Ewing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.