Brain stimulation can improve athletic performance

October 12, 2017, University of Kent
Brain stimulation can improve athletic performance
Dr. Lex Mauger, University of Kent. Credit: University of Kent

Research by the University of Kent into the effects of brain stimulation on athletes' performance has demonstrated that it is an effective way to improve endurance.

The findings are expected to advance our understanding of the brain's role in , how it can alter the physical limits of in healthy people and add further evidence to the debate on the use of legal methods to enhance performance in competition.

The research, which was conducted by Dr Lex Mauger and colleagues at Kent's School of Sport and Exercise Sciences (SSES), set out to investigate how endurance limits are a matter for the mind as well as the body.

By testing cycling time to task failure (TTF) in a group of 12 active participants in a placebo controlled study, Dr Mauger discovered that stimulating the brain by passing a mild electrical current (transcranial direct current stimulation or tDCS) over the scalp to stimulate it increased the activity of the area associated with muscle contraction. This decreased perception of effort and increased the length of time participants could cycle for.

The team explained this is because the exercise felt less effortful following stimulation. tDCS has been used to enhance but how it achieved this was previously unknown and this study has helped identify the mechanisms.

Bilateral extracephalic transcranial direct current stimulation improves performance in healthy individuals (Dr Luca Angius, Dr Lex Mauger, Dr James Hopker, and Professor Samule Marcora, University of Kent, with Professor Alvaro Pascual-Leone, Berenson-Allen Center for Non-Invasive Brain Stimulation, Division of Cognitive Neurology, Beth Israel Deaconess Medical Center and Dr Emiliano Santarnecch, Harvard Medical School, Boston, MA, USA) is published in the journal Brain Stimulation.

Explore further: Stimulating the brain makes exercising the legs feel easier

More information: L. Angius et al, Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals, Brain Stimulation (2017). DOI: 10.1016/j.brs.2017.09.017

Related Stories

Stimulating the brain makes exercising the legs feel easier

November 1, 2016
Research led by the University of Kent shows stimulation of the brain impacts on endurance exercise performance by decreasing perception of effort.

Electrical stimulation of brain may help people with schizophrenia learn to communicate better

July 13, 2017
UCLA researchers have found that people with schizophrenia were able to more accurately determine whether two auditory tones matched or differed, after receiving a type of electrical brain stimulation. Being able to distinguish ...

Commercial brain stimulation device impairs memory

August 17, 2015
People show impaired memory after receiving low intensity electrical stimulation administered to the frontal part of the brain by a commercial, freely available, device. Psychologists Laura Steenbergen and Lorenza Colzato, ...

Transcranial direct current stimulation improves mental manipulation of body part imagery

June 13, 2017
Transcranial direct current stimulation (tDCS) is a method by which a very weak direct current is applied to the head of a subject for 10 to 20 minutes to induce changes in the activities of cranial nerves. It has recently ...

Baycrest launches study combining music and brain stimulation to improve memory

September 18, 2017
Baycrest will embark on the first study combining music therapy with brain stimulation to improve memory among patients with Mild Cognitive Impairment (MCI).

Paracetamol improves exercise endurance in the heat

September 19, 2013
Paracetamol has a significant effect on exercise performance and the body's ability to cope with the thermal challenge of exercise in the heat, shows a study published today [20 September] in Experimental Physiology.

Recommended for you

Motor learning for precise motor execution

September 26, 2018
Scientists at Tokyo Metropolitan Institute of Medical Science, RIKEN, National Center of Neurology and Psychiatry, Nozomi Hospital and Tokyo Medical and Dental University have identified acquisition of two types of internal ...

Diversity in the brain—how millions of neurons become unique

September 26, 2018
How is it possible that so many different and highly specific neuron types arise in the brain? A mathematical model developed by researchers from the University of Basel's Biozentrum demonstrates that different variants of ...

Sensitive babies become altruistic toddlers

September 25, 2018
Our responsiveness to seeing others in distress accounts for variability in helping behavior from early in development, according to a study published September 25 in the open-access journal PLOS Biology by Tobias Grossmann ...

Immune cell pruning of dopamine receptors may modulate behavioral changes in adolescence

September 25, 2018
A study by MassGeneral Hospital for Children (MGHfC) researchers finds that the immune cells of the brain called microglia play a crucial role in brain development during adolescence, but that role is different in males and ...

Scientists reverse a sensory impairment in mice with autism

September 25, 2018
Using a genetic technique that allows certain neurons in the brain to be switched on or off, UCLA scientists reversed a sensory impairment in mice with symptoms of autism, enabling them to learn a sensory task as quickly ...

Why it doesn't get dark when you blink

September 25, 2018
People blink every five seconds. During this brief moment, no light falls on the retina, yet people continue to observe a stable picture of the environment with no intervals of darkness. Caspar Schwiedrzik and Sandrin Sudmann, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.