Researchers study cellular processes dependent on calcium ions

October 20, 2017, University of Freiburg
Molecular structure of the Ca2+-pumps in the plasma membrane, projected onto a neuronal culture (fluorescence in blue; a portion of neurons where expression of the auxiliary proteins Neuroplastin and Basigin has been knocked-down underwent cell death and are colored in red). Credit: Fakler Lab

Calcium-ATPases convey calcium ions (Ca2+) from the cytoplasm to the extracellular space via active transport (using ATP as an energy source), and thus fundamentally contribute to the control of a wide variety of Ca2+-dependent processes in virtually any type of cell in humans and animals. Scientists in the group of Dr. Uwe Schulte and Prof. Dr. Bernd Fakler at the University of Freiburg have successfully unraveled the molecular appearance of this well-known ion pump: Ca2+-pumps of the plasma membrane (PMCAs) are identified as protein complexes that are assembled from two ATP-hydrolyzing transporter proteins and two as-yet unknown subunits, neuroplastin and basigin. These two novel protein subunits are essential for stability and trafficking of the PMCA complexes to the plasma membrane and control the PMCA-mediated Ca2+-transport. The researchers have published their work in Neuron.

A variety of cellular processes such as release of transmitters and hormones, regulation of enzymatic activities and excitability, contraction or cell motility are controlled by intracellular Ca2+. These processes are switched on by Ca2+-influx, mostly through Ca2+-permeable ion channels, and they are switched off by Ca2+-ATPases in the , the PMCAs. The Fakler group has now shown that this switch-off by PMCAs may only take a few tens of milliseconds, in contrast to the seconds-lasting periods assumed previously. Seeking the mechanism behind this unexpectedly high efficiency in Ca2+-transport activity, the researchers identified co-assembly of the ATPase subunits with the auxiliary proteins neuroplastin and basigin, which promote effective integration of the PMCA complexes into the plasma membrane. Deletion of both neuroplastin and basigin in CNS neurons leads to severe disturbance of neuron signal transduction and ultimately to cell death.

Even before their identification as auxiliary subunits of PMCA complexes, neuroplastin and basigin were known by researchers. In fact, investigations by several groups using knock-out animals and tissues demonstrated fundamental involvement of both proteins in quite a variety of including formation, operation and plasticity of synapses in central neurons,spermatogenesis, fertilization, and infection of erythrocytes by plasmodium, the pathogen of malaria. So far, however, the molecular mechanisms underlying these processes have remained unresolved. Based on the newly established results by the Freiburg scientists, it appears reasonable to assume that all these processes share a common mechanism—the PMCA-mediated control of intracellular Ca2+-signaling.

Explore further: Researchers uncover the fundamental importance of AMPA receptor biogenesis for brain function

More information: Schmidt N, Kollewe A, Constantin CE, Henrich S, Ritzau-Jost A, Bildl W, Saalbach A, Hallermann S, Kulik A, Fakler B, Schulte U. Neuroplastin and Basigin are essential auxiliary subunits of plasma membrane Ca2+-ATPases and key regulators of Ca2+ clearance. Neuron (online on Oct 19th), 2017. DOI: 10.1016/j.neuron.2017.09.038

Related Stories

Researchers uncover the fundamental importance of AMPA receptor biogenesis for brain function

July 7, 2017
For the first time, researchers have uncovered the significance of the molecular assembly processes—called biogenesis—of AMPA-type glutamate receptors for proper operation of the human brain. AMPA receptors, the most ...

Mechanism of sculpting the plasma membrane of intestinal cells identified

August 1, 2011
The research group of Professor Pekka Lappalainen at the Institute of Biotechnology, University of Helsinki, has identified a previously unknown mechanism which modifies the structure of plasma membranes in intestinal epithelial ...

Recommended for you

Aggression neurons identified

May 25, 2018
High activity in a relatively poorly studied group of brain cells can be linked to aggressive behaviour in mice, a new study from Karolinska Institutet in Sweden shows. Using optogenetic techniques, the researchers were able ...

The brain's frontal lobe could be involved in chronic pain, according to research

May 25, 2018
A University of Toronto scientist has discovered the brain's frontal lobe is involved in pain transmission to the spine. If his findings in animals bear out in people, the discovery could lead to a new class of non-addictive ...

Doctors fail to flag concussion patients for critical follow-up

May 25, 2018
As evidence builds of more long-term effects linked to concussion, a nationwide study led by scientists at UCSF and the University of Southern California has found that more than half of the patients seen at top-level trauma ...

Study suggests brainwave link between disparate disorders

May 24, 2018
A brainwave abnormality could be a common link between Parkinson's disease, neuropathic pain, tinnitus and depression—a link that authors of a new study suggest could lead to treatment for all four conditions.

Bursts of brain activity linked to memory reactivation

May 24, 2018
Leading theories propose that sleep presents an opportune time for important, new memories to become stabilized. And it's long been known which brain waves are produced during sleep. But in a new study, researchers set out ...

Researchers define molecular basis to explain link between a pregnant mother's nutrition and infant growth

May 24, 2018
For years, pregnant mothers have questioned their nutritional habits: "Will eating more cause my baby to be overweight?" Or, "I'm eating for two, so it won't hurt to have an extra serving, right?"

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.