A step closer to a cure for adult-onset diabetes

October 23, 2017, Chalmers University of Technology
Pernilla Wittung Stafshede, Professor and head of the Chemical Biology division at the Department of Biology and Biological Engineering. She heads a research team focusing on metalloproteins and proteins that fold incorrectly. Previously, she was a professor for ten years in the United States, first at Tulane University (New Orleans) and later at Rice University (Houston), and for seven years at Umeå University before moving to Chalmers in 2015. Credit: Anna-Lena Lundqvist/Chalmers

In healthy people, exosomes – tiny structures secreted by cells to allow intercellular communication – prevent clumping of the protein that leads to type 2 diabetes. Exosomes in patients with the disease don't have the same ability. This discovery by a research collaboration between Chalmers University of Technology and Astrazeneca takes us a step closer to a cure for type 2 diabetes. 

Proteins are the body's workhorses, carrying out all the tasks in our cells. A protein is a long chain of amino acids that must be folded into a specific three-dimensional structure to work. Sometimes, however, they behave incorrectly and aggregate – clump together – into long fibres called amyloids, which can cause diseases. It was previously known that type 2 is caused by a protein aggregating in the pancreas.

"What we've found is that exosomes secreted by the cells in the pancreas stop that process in and protect them from type 2 diabetes, while the exosomes of do not," says Professor Pernilla Wittung Stafshede, who headed the study whose results were recently published in the Proceedings of the National Academy of Sciences (PNAS).

What we know now is that "healthy" exosomes bind the protein that causes diabetes on the outside, preventing it from aggregating; however, the results do not explain why. We also don't know if type 2 diabetes is caused by "sick" exosomes or if the disease itself causes them to malfunction. 

"The next step is to make controlled models of the exosomes, whose membranes contain lipids and proteins, to understand exactly what component affects the diabetes protein. If we can find which lipid or in the exosome membrane leads to that effect, and can work out the mechanism, then we'll have a good target for development of treatment for type 2 diabetes."

The study is actually a part of industrial doctoral student Diana Ribeiro's thesis work, and a collaboration between Chalmers and Astrazeneca.

"She came up with the idea for the project herself," says Wittung Stafshede, who is also Ribeiro's academic advisor at Chalmers. "She had done some research on before and I had read a bit about their potential. It's a fairly new and unexplored field, and honestly I didn't think the experiments would work. Diana had access to pancreatic cells through Astrazeneca – something we'd never had access to before – and she conducted the studies very thoroughly, and this led us to our discovery."

This is the first time that Wittung Stafshede has worked with Astrazeneca.

"We ought to collaborate more. It's beneficial to them to understand what molecular experiments we can carry out, and it's valuable for us to be able to put our research into a wider medical-clinical perspective. In the search for a future cure for type 2 diabetes, it's also good for us to already be working with a pharmaceutical company."

Explore further: New type 2 diabetes research paves the way for future Parkinson's treatments

More information: Diana Ribeiro et al. Extracellular vesicles from human pancreatic islets suppress human islet amyloid polypeptide amyloid formation, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1711389114

Related Stories

New type 2 diabetes research paves the way for future Parkinson's treatments

October 24, 2016
If you suffer from type 2 diabetes, you run a higher risk of being affected by Parkinson's disease. Chalmers researchers have now found a possible cause. The findings might lead to new future drugs.

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Protein packaging may cause the immune attacks of type 1 diabetes

November 21, 2016
Type-1 diabetes occurs when immune cells attack the pancreas. EPFL scientists have now discovered what may trigger this attack, opening new directions for treatments.

Scientists find that stem cell exosomes promote survival of retinal ganglion cells in rats

January 27, 2017
A new study in rats shows that stem cell secretions, called exosomes, appear to protect cells in the retina, the light-sensitive tissue in the back of the eye. The findings, published in Stem Cells Translational Medicine, ...

Recommended for you

Genomic study brings us closer to precision medicine for type 2 diabetes

September 21, 2018
Most patients diagnosed with type 2 diabetes are treated with a "one-size-fits-all" protocol that is not tailored to each person's physiology and may leave many cases inadequately managed. A new study by scientists at the ...

High gluten diet in pregnancy linked to increased risk of diabetes in children

September 19, 2018
A high gluten intake by mothers during pregnancy is associated with an increased risk of their child developing type 1 diabetes, suggests a study published by The BMJ today.

Anti-inflammatory protein promotes healthy gut bacteria to curb obesity

September 19, 2018
Scientists from the UNC School of Medicine discovered that the anti-inflammatory protein NLRP12 normally helps protect mice against obesity and insulin resistance when they are fed a high-fat diet. The researchers also reported ...

Study reveals the current rates of diagnosed type 1 and type 2 diabetes in American adults

September 18, 2018
A new study from the University of Iowa finds that type 2 diabetes remains overwhelmingly the most common type of diabetes diagnosed in American adults who have the disease.

Research reveals link between immunity, diabetes

September 14, 2018
When it comes to diet-induced obesity, your immune system is not always your friend.

BPA exposure in U.S.-approved levels may alter insulin response in non-diabetic adults

September 14, 2018
In a first study of its kind study, researchers have found that a common chemical consumers are exposed to several times a day may be altering insulin release. Results of the study, led by scientists at the University of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.