Genetic advance for male birth control

October 10, 2017
Chen Chen, MSU animal science assistant professor, and a team of scientists turned off the gene that controls sperm production, effectively silencing spermatogenesis in mice. Credit: Derrick Turner

When it comes to birth control, many males turn to two options: condoms or vasectomies. While the two choices are effective, both methods merely focus on blocking the transportation of sperm.

New research led by Michigan State University and published in Nature Communications, however, has given scientists a genetic foundation for a different option. Chen Chen, MSU animal science assistant professor, and a team of scientists turned off the gene that controls production, effectively silencing spermatogenesis in .

Since mice are mammals and use many of the same genes for reproduction as humans, this finding provides a strong lead for future research on human male contraception as well as animal sterilization.

"More than 500,000 men get vasectomies every year," Chen said. "There's a huge market for this research, and now we further understand the genetic underpinnings of sperm development in mammals."

At the genetic level, Chen identified PNLDC1, a genetic trimmer, as the key in this process. PNLDC1 trims small silencing RNAs that silence transposons, which can be described as genomic parasites. They're also called "jumping genes" and can hop into good and disrupt them by causing human diseases.

Transposons are kept in check by small silencing RNAs called piRNAs that can recognize and destroy these genomic parasites. In the case of , PNLDC1 silences harmful transposons by trimming piRNAs to a healthy length. This keeps piRNAs more stable and effective in fighting against transposons 

At the cellular level, the protein encoded by this gene is essential in genomic parasite regulation. Without PNLDC1, male mammals lose the ability to fight transposons. This arrests sperm cell development, and ultimately, at the physiological level, the result is sterilization.

To see if the genetic changes produced the desired results, Chen's team employed CRISPR/Cas9 technology to produce a genetically modified line of mice lacking the PNLDC1 gene. Bred without PNLDC1, the mice had fewer sperm and smaller testicles, leaving them infertile. The researchers also observed that PNLDC1 wasn't overly involved in other biological activities.

There were few, if any side effects, and the mice had no obvious differences in growth, behavior or appearance, other than having small testicles. The defect from PNLDC1 deficiency also is male specific. This genetic immune system is required for male germ cell development, but it isn't part of female germ cell development in mammals.

When the scientists examined the mice, they saw that they had longer, untrimmed piRNAs, confirming that PNLDC1 was the key, Chen said.

"This small RNA-based immune system is quite smart. It can detect what sites are producing parasite-infested RNAs, and go there and shut them down," he said. "So silencing transposons is like fixing a water leak in your house. Rather than stuff a rag into the leak and hope that it works, we went to the source and turned off the water supply."

Explore further: Trimming piRNAs' tails to clip jumping genes' wings

Related Stories

Trimming piRNAs' tails to clip jumping genes' wings

February 25, 2016
A research group at the University of Tokyo has identified a Pac-Man-like enzyme called "Trimmer" involved in the generation of a class of small RNAs, which protect the genome of germ cells from unwanted genetic rewriting.

Scientists identify key regulator of male fertility

September 19, 2017
When it comes to male reproductive fertility, timing is everything. Now scientists are finding new details on how disruption of this timing may contribute to male infertility or congenital illness.

Long, mysterious strips of RNA contribute to low sperm count

August 24, 2017
Scientists have found distinctive portions of genetic material—known as lncRNAs—that help sperm develop. Male mice lacking a particular lncRNA have low sperm count, suggesting lncRNAs could represent novel infertility ...

Imperfect system is all that protects you from genetic parasites out to destroy your genes

November 17, 2014
We like to think of evolution as a fine-tuning process, one that whittles away genetic redundancies. The only problem is, we are not fine-tuned machines. Our bodies are chock-full of parts that either don't work anymore or ...

Recommended for you

Maternal diet may program child for disease risk, but better nutrition later can change that

October 20, 2017
Research has shown that a mother's diet during pregnancy, particularly one that is high-fat, may program her baby for future risk of certain diseases such as diabetes. A new study from nutrition researchers at the University ...

New gene editing approach for alpha-1 antitrypsin deficiency shows promise

October 20, 2017
A new study by scientists at UMass Medical School shows that using a technique called "nuclease-free" gene editing to correct cells with the mutation that causes a rare liver disease leads to repopulation of the diseased ...

Researchers drill down into gene behind frontotemporal lobar degeneration

October 19, 2017
Seven years ago, Penn Medicine researchers showed that mutations in the TMEM106B gene significantly increased a person's risk of frontotemporal lobar degeneration (FTLD), the second most common cause of dementia in those ...

New clues to treat Alagille syndrome from zebrafish

October 18, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies potential new therapeutic avenues for patients with Alagille syndrome. The discovery, published in Nature Communications, ...

Genetic variants associated with obsessive-compulsive disorder identified

October 18, 2017
(Medical Xpress)—An international team of researchers has found evidence of four genes that can be linked to obsessive-compulsive disorder (OCD). In their paper published in the journal Nature Communications, the group ...

An architect gene is involved in the assimilation of breast milk

October 17, 2017
A family of "architect" genes called Hox coordinates the formation of organs and limbs during embryonic life. Geneticists from the University of Geneva (UNIGE) and the Swiss Federal Institute of Technology in Lausanne (EPFL), ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.