Green tea extract delivers molecular punch to disrupt formation of neurotoxic species

October 11, 2017, McMaster University
Credit: McMaster University

Green tea is widely considered to be beneficial for the brain. The antioxidant and detoxifying properties of green tea extracts help fight catastrophic diseases such as Alzheimer's. However, scientists have never fully understood how they work at the molecular level and how they could be harnessed to find better treatments.

Research from McMaster University is shedding new light on those underlying mechanisms. Preclinical evidence suggests that the green tea compound known as EGCG interferes with the formation of toxic assemblies (oligomers), one of the prime suspects in the early steps of the molecular cascade that leads to cognitive decline in Alzheimer's patients.

"At the , we believe EGCG coats toxic oligomers and changes their ability to grow and interact with healthy cells," explains Giuseppe Melacini, lead author and a professor in the Departments of Chemistry and Chemical Biology as well as of Biochemistry and Biomedical Sciences at McMaster, who has worked on Alzheimer's-related research for 15 years.

The findings, which are the results of a decade of advancements in (NMR) methodology and are featured in the cover page of the Journal of the American Chemical Society, could lead to new therapies and further drug discovery, say researchers.

Despite decades of research, the causes of Alzheimer's remain not fully understood, and treatment options are limited. According to the latest census numbers, seniors living in Canada now outnumber children, dramatically increasing the need for effective drugs and prevention. By some estimates, the number of Canadians with dementia is expected to rise to 937,000 by the year 2031, an increase of 66 per cent compared to current numbers.

"We all know that currently there is no cure for Alzheimer's once symptoms emerge, so our best hope is early intervention. That could mean using extracts or their derivatives early on, say 15 to 25 years before any symptoms ever set in," says Melacini.

Next, researchers hope to tackle nagging problems such as how to modify EGCG and similar molecules so they can be used effectively as a food additive, for example. EGCG is unstable at room temperature and notoriously difficult to deliver into the human body, particularly the brain.

"Food additives could prove to be a crucial therapy or adjuvant" says Melacini. "It will be important to capitalize on them early in life to increase the odds of healthy aging, in addition to exercise and a healthy lifestyle."

Explore further: Finding ways to detect and treat Alzheimer's disease

More information: Rashik Ahmed et al. Molecular Mechanism for the (−)-Epigallocatechin Gallate-Induced Toxic to Nontoxic Remodeling of Aβ Oligomers, Journal of the American Chemical Society (2017). DOI: 10.1021/jacs.7b05012

Related Stories

Finding ways to detect and treat Alzheimer's disease

February 17, 2014
Alzheimer's disease has long been marked by progress—but not the kind of progress the medical community seeks. It is the most common form of dementia among older Americans, and its risk increases with increasing age; for ...

Green tea ingredient may ameliorate memory impairment, brain insulin resistance, and obesity

July 28, 2017
A study published online in The FASEB Journal, involving mice, suggests that EGCG (epigallocatechin-3-gallate), the most abundant catechin and biologically active component in green tea, could alleviate high-fat and high-fructose ...

Green tea extract and exercise hinder progress of Alzheimer's disease in mice

May 4, 2015
According to the National Institutes of Health (NIH), Alzheimer's disease (AD) may affect as many as 5.5 million Americans. Scientists currently are seeking treatments and therapies found in common foods that will help stave ...

Study offers new insight into how Alzheimer's disease begins

November 18, 2016
A new study from The University of Texas Medical Branch at Galveston offers important insight into how Alzheimer's disease begins within the brain. The researchers found a relationship between inflammation, a toxic protein ...

Green tea and red wine extracts interrupt Alzheimer's disease pathway in cells

February 5, 2013
Natural chemicals found in green tea and red wine may disrupt a key step of the Alzheimer's disease pathway, according to new research from the University of Leeds.

Recommended for you

New study suggests viral connection to Alzheimer's disease

June 21, 2018
Of the major illnesses facing humanity, Alzheimer's disease (AD) remains among the most pitiless and confounding. Over a century after its discovery, no effective prevention or treatment exists for this progressive deterioration ...

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed

June 21, 2018
Alzheimer's disease could be better treated, thanks to a breakthrough discovery of the properties of the metals in the brain involved in the progression of the neurodegenerative condition, by an international research collaboration ...

New screening tool could help diagnose early cognitive decline in dementia from home

June 19, 2018
An international team of scientists have developed a new way to screen for age-related cognitive decline at home using a test which asks people to detect sounds and flashes on their laptop or phone.

Genes linked to Alzheimer's contribute to damage in different ways

June 12, 2018
Multiple genes are implicated in Alzheimer's disease. Some are linked to early-onset Alzheimer's, a condition that develops in one's 30s, 40s and 50s, while others are associated with the more common late-onset form of the ...

Researchers reverse cognitive impairments in mice with dementia

June 8, 2018
Reversing memory deficits and impairments in spatial learning is a major goal in the field of dementia research. A lack of knowledge about cellular pathways critical to the development of dementia, however, has stood in the ...

As mystery deepens over the cause of Alzheimer's, researchers seek new answers

June 6, 2018
For more than 20 years, much of the leading research on Alzheimer's disease has been guided by the "amyloid hypothesis."

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.