H7N9 influenza is both lethal and transmissible in animal model for flu

October 19, 2017 by Kelly April Tyrrell, University of Wisconsin-Madison
Influenza A (H7N9) as viewed through an electron microscope. Both filaments and spheres are observed in this photo. Credit: CDC

In 2013, an influenza virus that had never before been detected began circulating among poultry in China. It caused several waves of human infection and in late 2016, the number of people to become sick from the H7N9 virus suddenly started to rise. As of late July 2017, nearly 1,600 people had tested positive for avian H7N9. Nearly 40 percent of those infected had died.

In early 2017, Yoshihiro Kawaoka, professor of pathobiological sciences at the University of Wisconsin-Madison School of Veterinary Medicine, received a sample of H7N9 isolated from a patient in China who had died of the flu. He and his research team subsequently began work to characterize and understand it. The first of those results are published today (Oct. 19, 2017) in Cell Host & Microbe.

For the first time, Kawaoka says, his team has identified an virus strain that is both transmissible between ferrets (the best animal model proxy for human influenza infections) and lethal, both in the animal originally infected and in otherwise healthy ferrets in close contact with these infected animals.

"This is the first case of a highly pathogenic avian virus that transmits between ferrets and kills them," Kawaoka says. "That's not good for public health."

Everyone in the influenza field knew it was only a matter of time before the virus became pathogenic in chickens, which is to say that it became capable of causing disease, but Kawaoka says it took several years. It was initially hard to detect because, unlike some other influenza viruses such as H5N2—which is highly lethal in chickens and caused significant outbreaks on poultry farms across the U.S. and elsewhere in 2015—H7N9 was not killing the chickens it infected.

Instead, it remained silent, passing unknown from chicken to chicken and, occasionally, infecting humans that came into contact with the birds.

Influenza viruses are well known for their propensity to adapt. With each new infection of a host, small changes take place within the genomes of influenza viruses. Sometimes these mutations occur in key regions and lead to significant alterations to the original virus, rendering it capable of infecting new hosts, making hosts sick, causing greater illness, and becoming resistant to the drugs typically used to treat them.

Kawaoka and his team observed this within the sample isolated from the deceased patient, who while alive had been treated with the common flu drug Tamiflu. Using a technique to read the genetic identity of the virus population that had infected the patient, Kawaoka's team learned the virus had started to mutate: The sample contained a population of H7N9 virus that was sensitive to Tamiflu and a population that was resistant.

So the team created two viruses virtually identical to those isolated from the patient, one sensitive to Tamiflu and the other bearing the mutation that conferred resistance to the drug. Comparing this to a low-pathogenic version of the H7N9 virus that Kawaoka and others had previously studied, the research team assessed how well each virus grows in human respiratory cells, where most influenza viruses take up residence in the body. They found that each grew efficiently, though the resistant strain was less effective than the other two.

The team also found that each virus infects and causes illness, to varying degrees, in several animal models for influenza—mice, ferrets and macaques.

To test whether the virus was transmissible between mammals, the researchers set up experiments in which ferrets were housed alone in individual cages separated by a barrier that allowed respiratory droplets to pass from one cage to the next. In each pair, one ferret was deliberately infected with the virus while the other was placed into the cage healthy.

Each of the three virus types were transmitted from infected ferrets to the previously uninfected animals. Two of three ferrets infected with the nonresistant strain of H7N9—the strain currently circulating in China—died, as did the animals to which they passed the virus.

"Without additional mutations, the virus transmitted and killed ferrets," says Kawaoka, noting that further alterations to the virus may not be necessary to make it a potential public health threat, though human-to-human transmission has thus far remained limited.

The team also confirmed the drug-resistant H7N9 did not respond to oseltamivir, the active agent in Tamiflu. It did respond to another drug called a protease inhibitor, but Kawaoka says it is a drug currently approved only in Japan and only for use in pandemic situations.

"I don't want to cause alarm," Kawaoka says, but "it's only a matter of time before the resistant virus acquires a mutation that allows it to grow well, (rendering it) more likely to be lethal at the same time it is resistant."

However, Kawaoka and his team are currently unable to better understand what mutations may enable this transition, at least in the United States, where a moratorium on work that might cause a pathogen to take on a new function not currently known in nature has been in place for several years.

"We can't do the experiments to find out why," Kawaoka says. "We really need to understand why H7N9 is lethal and transmissible, and what is different in this one resistant H7N9. If we knew that, because there are multiple viruses circulating, we could narrow down efforts to those that are lethal and transmissible."

He recently published a commentary in the Proceedings of the National Academy of Sciences, co-authored with two colleagues who are also experts in influenza, in which they explain the challenges this moratorium creates for understanding the potential of viruses like H7N9 to become pandemic.

"Results from (gain-of-function) studies would almost certainly help in understanding the pandemic potential of and produce public health benefits, such as the prioritization and development of pre-pandemic vaccines and antiviral drugs," the authors write. Fundamental (gain-of-function) research on transmissibility, host-range restriction, drug resistance, immunogenicity, pathogenicity, and replicative ability would also benefit global ."

The H7N9 virus is likely to continue to mutate as it infects humans, resulting in adaptations that enhance the viruses' pathogenicity or ability to pass from person to person, Kawaoka adds. In other words, nature is already performing its own gain-of-function experiments, with potentially serious consequences.

It has, however, become a bit easier recently to detect when poultry are infected with H7N9, thereby allowing people to limit their exposure. That's because the virus has begun to kill birds in China, too. But unlike in the U.S., where farmers cull their flocks to limit the spread of infectious disease, China relies on vaccines. This worries Kawaoka, given how well the virus has been shown to grow.

For now, he says: "We should improve our surveillance."

Explore further: Study puts troubling traits of H7N9 avian flu virus on display

More information: Cell Host & Microbe, Imai, Watanabe, Kiso, Nakajima, Yamayoshi, Iwatsuki-Horimoto, and Hatta et al.: "A Highly Pathogenic Avian H7N9 Influenza Virus Isolated from A Human Is Lethal in Some Ferrets Infected via Respiratory Droplets," www.cell.com/cell-host-microbe … 1931-3128(17)30396-7 , DOI: 10.1016/j.chom.2017.09.008

Related Stories

Study puts troubling traits of H7N9 avian flu virus on display

July 10, 2013
The emerging H7N9 avian influenza virus responsible for at least 37 deaths in China has qualities that could potentially spark a global outbreak of flu, according to a new study published today (July 10, 2013) in the journal ...

Ferrets, pigs susceptible to H7N9 avian influenza virus

May 23, 2013
Chinese and U.S. scientists have used virus isolated from a person who died from H7N9 avian influenza infection to determine whether the virus could infect and be transmitted between ferrets. Ferrets are often used as a mammalian ...

Highly pathogenic A(H7N9) virus mutation does not change risk to humans

March 13, 2017
In February 2017, a new A(H7N9) virus—indicating high pathogenicity in poultry—was detected in three patients connected to Guangdong, China, as well as in environmental and poultry samples. This is an important development ...

Genes found in nature yield 1918-like virus with pandemic potential

June 11, 2014
An international team of researchers has shown that circulating avian influenza viruses contain all the genetic ingredients necessary to underpin the emergence of a virus similar to the deadly 1918 influenza virus.

Flu transmission work is urgent: Nature Comment

January 25, 2012
The author of an upcoming Nature paper about H5N1 argues in a Nature Comment article today that research into deadly pathogenic viruses must continue if pandemics are to be prevented. Yoshihiro Kawaoka suggests, after reviewing ...

New, more effective strategy for producing flu vaccines

December 5, 2016
A team of researchers led by Yoshihiro Kawaoka, professor of pathobiological sciences at the University of Wisconsin-Madison School of Veterinary Medicine, has developed technology that could improve the production of vaccines ...

Recommended for you

Infants born to obese mothers risk developing liver disease, obesity

November 16, 2018
Infant gut microbes altered by their mother's obesity can cause inflammation and other major changes within the baby, increasing the risk of obesity and non-alcoholic fatty liver disease later in life, according to researchers ...

New study shows NKT cell subsets play a large role in the advancement of NAFLD

November 16, 2018
Since 2015 it has been known that the gut microbiota could have a direct impact on nonalcoholic fatty liver disease (NAFLD), which affects up to 12% of adults and is a leading cause of chronic liver disease. In the November ...

Antibiotic prescribing influenced by team dynamics within hospitals

November 15, 2018
Antibiotic prescribing by doctors is influenced by team dynamics and cultures within hospitals.

Zika may hijack mother-fetus immunity route

November 14, 2018
To cross the placenta, Zika virus may hijack the route by which acquired immunity is transferred from mother to fetus, new research suggests.

New research aims to help improve uptake of hepatitis C testing

November 14, 2018
New research published in Scientific Reports shows persisting fears about HIV infection may impact testing uptake for the hepatitis C Virus (HCV).

Maternally acquired Zika immunity can increase dengue disease severity in mouse pups

November 14, 2018
To say that the immune system is complex is an understatement: an immune response protective in one context can turn deadly over time, as evidenced by numerous epidemiological studies on dengue infection, spanning multiple ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.