New method for tissue regeneration, inspired by nature, described by scientists

October 3, 2017, University of Birmingham
New method for tissue regeneration, inspired by nature, described by scientists

Scientists have found a way of mimicking our body's natural healing process, using cell derived nano-sized particles called vesicles, to repair damaged tissue.

The paper, published in Scientific Reports, describes a new approach to regeneration; stimulating cells to produce vesicles which can then be delivered to facilitate .

The research team, led by the University of Birmingham, believe that the findings mark the first step in a new direction for regeneration with the potential to help repair bone, teeth and cartilage.

Fracture numbers are expected to double by 2020, putting tremendous strain on healthcare-systems worldwide. Osteoporosis-fragility fractures alone represent a cost of £1.5 billion to the NHS, and for individuals it can have a detrimental impact on quality of life.

Current approaches have significant limitations; autologous grafts cannot meet demand and cause patient morbidity, allogeneic bone lacks bioactive factors, and growth factor-based approaches (e.g. BMP-2) may have serious side-effects and high costs.

Consequently, there is a considerable need to devise new methods for the generation of large volumes of bone without associated patient morbidity.

Dr. Sophie Cox and Dr. Owen Davies describe the new method. Credit: University of Birmingham

In recent years, attention has been focused on cell-based approaches. However, translation is frequently prevented by insurmountable regulatory, ethical and economic issues.

This novel solution delivers all the advantages of cell-based therapies but without using viable cells, by harnessing the regenerative capacity of nano-sized particles called extracellular vesicles that are naturally generated during bone formation.

Excitingly, the team have shown in-vitro that if extracellular vesicles are applied in combination with a simple phosphate the therapy outperforms the current gold standard, BMP-2.

Dr Sophie Cox, from the School of Chemical Engineering at the University of Birmingham, explained, "Though we can never fully mimic the complexity of vesicles produced by cells in nature, this work describes a new pathway harnessing natural developmental processes to facilitate hard tissue repair."

Dr Owen Davies, EPSRC E-TERM Landscape Fellow at the University of Birmingham and Loughborough University, added, "It is early days, but the potential is there for this to transform the way we approach tissue repair. We're now looking to produce these therapeutically valuable particles at scale and also examine their capacity to regenerate other tissues.".

Explore further: New tool for cell-free therapy based on artificial membrane vesicles

More information: O. G. Davies et al, Annexin-enriched osteoblast-derived vesicles act as an extracellular site of mineral nucleation within developing stem cell cultures, Scientific Reports (2017). DOI: 10.1038/s41598-017-13027-6

Related Stories

New tool for cell-free therapy based on artificial membrane vesicles

August 22, 2017
Scientists at Kazan Federal University's Institute of Fundamental Medicine and Biology, led by Professor Albert Rizvanov, have shown that artificial membrane vesicles generated by Cytochalasin B treatment of human cells retain ...

Researchers report regenerative effects of low-dose growth factors for bone defect healing

July 27, 2017
Researchers compared the effects of three bone growth factors to bone morphogenetic protein 2 (BMP2)—the most commonly used agent for repair of large bone defects, which is not without risks at the doses required—and ...

Scientists regenerate bone tissue using only proteins secreted by stem cells

May 12, 2015
Scientists have discovered a way to regrow bone tissue using the protein signals produced by stem cells. This technology could help treat victims who have experienced major trauma to a limb, like soldiers wounded in combat ...

Breakthrough for bone regeneration via double-cell-layered tissue engineering technique

October 6, 2016
Various technologies have been developed to introduce laboratory-grown bone-forming cells into bone defects to promote their repair. However, these have many limitations as the conditions of the cells and their surroundings ...

Growing new bone for more effective injury repair

March 9, 2017
Broken bones do not always repair fully, especially after major trauma such as a car accident. Complications can occur when the bone is broken in several places, the blood flow is reduced or infection sets in. Patients can ...

Repair cartilage potentially can heal horribly broken bones

May 11, 2016
Stem cells could one day be stimulated to make a special type of cartilage to help repair large, hard-to-heal bone fractures – a potential boon for doctors treating big-money athletes, USC researchers say.

Recommended for you

Fabric imbued with optical fibers helps fight skin diseases

February 23, 2018
A team of researchers with Texinov Medical Textiles in France has announced that their PHOS-ISTOS system, called the Fluxmedicare, is on track to be made commercially available later this year. The system consists of a piece ...

Low-calorie diet enhances intestinal regeneration after injury

February 22, 2018
Dramatic calorie restriction, diets reduced by 40 percent of a normal calorie total, have long been known to extend health span, the duration of disease-free aging, in animal studies, and even to extend life span in most ...

Gut microbes protect against sepsis—mouse study

February 22, 2018
Sepsis occurs when the body's response to the spread of bacteria or toxins to the bloodstream damages tissues and organs. The fight against sepsis could get a helping hand from a surprising source: gut bacteria. Researchers ...

Artificial intelligence quickly and accurately diagnoses eye diseases and pneumonia

February 22, 2018
Using artificial intelligence and machine learning techniques, researchers at Shiley Eye Institute at UC San Diego Health and University of California San Diego School of Medicine, with colleagues in China, Germany and Texas, ...

Fertility breakthrough: New research could extend egg health with age

February 22, 2018
Women have been told for years that if they don't have children before their mid-30s, they may not be able to. But a new study from Princeton University's Coleen Murphy has identified a drug that extends egg viability in ...

Breakthrough could lead to better drugs to tackle diabetes and obesity

February 22, 2018
Breakthrough research at Monash University has shown how different areas of major diabetes and obesity drug targets can be 'activated', guiding future drug development and better treatment of diseases.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.