Mini-kidneys grown in lab reveal renal disease secrets

October 2, 2017, University of Washington
Kidney organoids grown in the lab and suspended in a lab dish show the formation of cysts (right) in the disease model of polycystic kidney disease. Normal kidney organoids are on the left. Credit: Freedman Lab/UW Medicine

By creating and manipulating mini-kidney organoids that contain a realistic micro-anatomy, UW Medicine researchers can now track the early stages of polycystic kidney disease. The organoids are grown from human stem cells.

Polycystic affects 12 million people. Until recently, scientists have been unable to recreate the progression of this human disease in a laboratory setting.

That scientific obstacle is being overcome. A report coming out next week shows that, by substituting certain physical components in the organoid environment, cyst formation can be increased or decreased.

Benjamin Freedman, assistant professor of medicine in the Division of Nephrology at the UW School of Medicine, and his team at the Kidney Research Institute, led these studies in conjunction with scientists at other institutions in the United States and Canada. Freedman and his group also are investigators at the UW Medicine Institute for Stem Cell and Regenerative Medicine

They outlined their methods and results in a paper to be published Oct. 2 in Nature Materials

"Beforehand, we had shown that these organoids could form PKD-like cysts, but what's new here is that we've used the model to understand something fundamental about that disease," said Freedman.

Benjamin Freedman of UW Medicine in Seattle talks about his recent study using mini-kidney organoids to understand the progression of polycystic kidney disease. The video includes close ups of the organoids and cyst formation and other footage from his lab. Credit: Randy Carnell and Megan Clark/UW Medicine

As one example, the team found that PKD mini-kidneys grown in free-floating conditions formed hollow cysts that were very large. These cysts could easily be seen. In contrast, PKD mini-kidneys attached to plastic dishes stayed small.

According to Nelly Cruz, the lead author of the paper, other manipulations to the organoid also affect the progression of .

"We've discovered that polycystin proteins, which are causing the disease, are sensitive to their micro-environment," she explained. "Therefore, if we can change the way they interact or what they are experiencing on the outside of the cell, we might actually be able to change the course of the disease." Cruz is a research scientist in the Freedman lab.

In another paper to be published in Stem Cells, Freedman and his team discuss how podocytes, which are specialized cells in the body that filter blood plasma to form urine, can be generated and tracked in a lab environment. Study of gene-edited human kidney organoids showed how podocytes form certain filtration barriers, called slit diaphragms, just as they do in the womb. This might give the team insight into how to counter the effects of congenital gene mutations that can cause glomerulosclerosis, another common cause of kidney failure.

Watch kidney organoids grow from human cells and form cysts. These organoids were created as a disease model for polycystic kidney disease. Credit: Freedman lab/UW Medicine

Taken together, these papers are examples of how medical scientists are making progress toward developing effective, personalized therapies for polycystic kidney disease and other kidney disorders.

"We need to understand how PKD works," Freedman said. "Otherwise, we have no hope of curing the disease."

"And our research," he added, "is telling us that looking at the outside environment of the kidney may be the key to curing the disease. This gives us a whole new interventional window.

Explore further: Method to create kidney organoids from patient cells provides insights on kidney disease

More information: Nature Materials (2017). Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease, nature.com/articles/doi:10.1038/nmat4994

Related Stories

Method to create kidney organoids from patient cells provides insights on kidney disease

November 17, 2016
A new method to create kidney organoids from patient cells may provide insights into how kidney diseases arise and how they should be treated. The research will be presented at ASN Kidney Week 2016 November 15¬-20 at McCormick ...

Mini-kidney organoids re-create disease in lab dishes

October 23, 2015
Mini-kidney organoids have now been grown in a laboratory by using genome editing to re-create human kidney disease in petri dishes.

Study finds four genes linked to cystic diseases of the liver and kidney

April 6, 2017
Yale researchers are studying kidney and liver diseases to determine which genes are involved in the formation of cysts.

Surprising mechanism discovered in polycystic kidney disease

July 29, 2013
A study by Yale researchers has uncovered a new and unexpected molecular mechanism in the development of polycystic kidney disease, or PKD. The study appears in Nature Genetics.

CRISPR/Cas9 + HPSC = human PKD lab model

December 11, 2015
CRISPR/Cas9 is hot. News of the revolutionary gene editing technique that is already shaking up bioscience has finally reached the news media and the public. Now comes a first rate example of how CRISPR is changing the pace ...

Research findings point to new therapeutic approach for common cause of kidney failure

September 5, 2013
New research has uncovered a process that is defective in patients with autosomal dominant polycystic kidney disease, a common cause of kidney failure. The findings, which appear in an upcoming issue of the Journal of the ...

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.