Multiple research approaches are key to pandemic preparedness, NIAID officials say

October 5, 2017

Preparedness in the face of major disease outbreaks can save thousands of lives: Rapid deployment of effective diagnostics, treatments, and vaccines may even stop the disease from potentially exploding into a pandemic. A new article by Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, and colleagues examines the multifaceted nature of effective preparedness and the particular role that biomedical research plays. Specifically, the article examines three approaches to pandemic preparedness: pathogen-specific work, platform-based technologies, and prototype-pathogen efforts. Using vaccine development as an example, the authors conclude that a combination of all three approaches will lead to the best preparedness for future pandemics.

The article appears online today in The Journal of the American Medical Association.

Pathogen-specific research prioritizes diseases known to be dangerous, such as Ebola. Countermeasures to prevent and fight the are developed ahead of time and can be rapidly deployed if those diseases emerge. However, this approach relies on the ability to correctly identify future threats and cannot prepare for unexpected outbreaks, such as HIV, SARS, or Zika.

With platform-based approaches, researchers focus on developing customizable techniques, such as those involving nanoparticles or viral vectors. In the event of a pandemic, genetic material can be incorporated into the platform to protect recipients against a specific disease.

The "prototype pathogen" approach can shorten the time needed to create vaccines using platform-based methods. This involves studying the characteristics of categories or families of pathogens, such as the family of viruses that contains dengue, West Nile and Zika viruses, and developing vaccines for the category ahead of time. When a disease from a specific category causes an , these vaccines can be customized if necessary to the specific pathogen within that family, and researchers have a greater chance of quickly deploying an effective , the authors write.

Despite their adaptability, platform-based and prototype-pathogen approaches do not necessarily yield fully-developed vaccines, treatments or diagnostics, which can lead to a slower response than if pathogen-specific countermeasures had been developed. The best way forward is a combination of all three approaches, the authors write. By investing in research to develop specific countermeasures for known threats and utilizing platform-based and prototype-pathogen approaches to allow for adaptation when unexpected outbreaks arise, global public health organizations can best prepare to combat future disease outbreaks.

Explore further: Simple strategy could lead to a 'universal' flu vaccine

More information: Hilary D. Marston et al, The Critical Role of Biomedical Research in Pandemic Preparedness, JAMA (2017). DOI: 10.1001/jama.2017.15033

Related Stories

Simple strategy could lead to a 'universal' flu vaccine

October 2, 2017
It's that time of year again: Temperatures drop, sleeves go up, and the needles come out. If scientists at The Rockefeller University have their way, however, the annual ritual of the flu shot could become obsolete.

Infectious outbreaks must be combatted strategically, experts argue

April 21, 2016
New funding is not enough to guarantee success against emerging infectious diseases around the world. Rather, good governance, a long-term technology investment strategy and strong product management skills are essential, ...

New vaccine strategy identified for explosive emerging diseases

May 31, 2017
A 'designer' manganese-peptide antioxidant of the world's toughest bacterium, combined with radiation, have shown to be successful in the development of a vaccine to counter Venezuelan Equine Encephalitis Virus (VEEV), a ...

Recommended for you

Exploring how herpes simplex virus changes when passed between family members

October 22, 2017
A new study explores how herpes simplex virus might change when passed from one individual to another, information that may prove useful in future development of therapeutics and vaccines. This rare glimpse into a transmission ...

Pneumonia vaccine under development provides 'most comprehensive coverage' to date, alleviates antimicrobial concerns

October 20, 2017
In 2004, pneumonia killed more than 2 million children worldwide, according to the World Health Organization. By 2015, the number was less than 1 million.

Newly discovered viral marker could help predict flu severity in infected patients

October 20, 2017
Flu viruses contain defective genetic material that may activate the immune system in infected patients, and new research published in PLOS Pathogens suggests that lower levels of these molecules could increase flu severity.

H7N9 influenza is both lethal and transmissible in animal model for flu

October 19, 2017
In 2013, an influenza virus that had never before been detected began circulating among poultry in China. It caused several waves of human infection and in late 2016, the number of people to become sick from the H7N9 virus ...

Flu simulations suggest pandemics more likely in spring, early summer

October 19, 2017
New statistical simulations suggest that Northern Hemisphere flu pandemics are most likely to emerge in late spring or early summer at the tail end of the normal flu season, according to a new study published in PLOS Computational ...

New insights into herpes virus could inform vaccine development

October 18, 2017
A team of scientists has discovered new insights into the mechanisms of Epstein-Barr virus (EBV) infection, as well as two antibodies that block the virus' entry into cells. The findings, published in Proceedings of the National ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.