Flashing neurons in worms reveal how the brain generates behavior

October 4, 2017 by Nina Bai, University of California, San Francisco
Flashing neurons in worms reveal how the brain generates behavior
Saul Kato, PhD, is using a new high-resolution whole-brain imaging technique to see the neurons in the worm C. elegans. This technique allows Kato to see how the nervous system of the worm works together to generate behavior. Credit: Noah Berger 

The 100 billion neurons of the human brain control our behavior, but so far there is no way to keep track of all that activity, cell by cell. Whole-brain imaging techniques like fMRI offer only a blurry view of the action, with each pixel representing tens of thousands of neurons.

To help get a clearer picture of how behavior arises from a biological neural network, UC San Francisco researcher Saul Kato, PhD, is using an animal with a much simpler brain.

Tiny, see-through worms called C. elegans, which are less than a millimeter long, engage in a wide range of complex behaviors: escaping from danger, moving toward food, sensing temperature, light and chemicals in their environment, and finding mates.

"They do everything all animals do, but they do it with only 302 – and now we can watch nearly all of them at the same time," said Kato, assistant professor of neurology at the UCSF Weill Institute for Neurosciences.

Kato is using a new high-resolution whole-brain imaging technique to see how the entire nervous system of C. elegans works together to generate behavior.

The worm may be the first multicellular animal for which such a complete and detailed picture of has been visualized.

Because electrical activity in neurons corresponds to changes in calcium ion concentration, Kato's team adds a fluorescent calcium sensor to every neuron of the worm brain. Looking through a microscope, they can then see and record, at single-cell resolution, a flashing chorus of neural activity. The researchers identify patterns of activity that correspond to specific behaviors such as dorsal and ventral turns (the lie on their sides), and forward and backward crawling.

Parsing the flashing activity neuron by neuron is the most laborious part of the approach, says Kato, and they are now developing machine learning technologies to speed up this process.

The flashing patterns are consistent from worm to worm, like a code for worm behavior. Kato can decode a worm's behavior by looking at a readout of its neural activity.

"Even when the worm is trapped, we can tell you what the worm is trying to do just by reading its brain activity," Kato said

Earlier imaging technology could track at most a few neurons at a time, which led people to attribute specific behaviors to specific neurons. But the ability to watch the entire worm brain at work has revealed that even simple behaviors involve the whole . Kato likens this global to a chorus, where every neuron sings along to the same song but with slightly different parts.

"This chorus was a surprising finding," said Kato. "We surmise that it is a signal telling each neuron what the body is trying to do so they can contribute meaningfully to the whole animal's function, like sailors on a submarine. It's a way for the neurons to communicate with each other."

Next, Kato hopes to study how disruptions to the chorus affect and underlie motor and psychiatric disorders.

"Perturbations of this healthy system cause disease," said Kato. "Now we can watch in great detail how these dysfunctional motor patterns emerge."

Explore further: Biologists identify signals that drive distinct behavior in microscopic nematode worms

Related Stories

Biologists identify signals that drive distinct behavior in microscopic nematode worms

January 19, 2017
Dr. Kevin Collins carefully places a petri dish with what looks like a blotch of yellowish slime under a microscope. Magnified, the slime comes alive as hundreds of translucent worms, known as Caenorhabditis elegans, slither ...

Watching sensory information translate into behavior

February 12, 2016
It remains one of the most fundamental questions in neuroscience: How does the flood of sensory information—everything an animal touches, tastes, smells, sees, and hears—translate into behavior?

Researchers provide first peek at how neurons multitask

November 6, 2014
Researchers at the University of Michigan have shown how a single neuron can perform multiple functions in a model organism, illuminating for the first time this fundamental biological mechanism and shedding light on the ...

3-D footage of nematode brains links neurons with motion and behavior

December 30, 2015
Princeton University researchers have captured among the first recordings of neural activity in nearly the entire brain of a free-moving animal. The three-dimensional recordings could provide scientists with a better understanding ...

Recommended for you

Animal study connects fear behavior, rhythmic breathing, brain smell center

April 20, 2018
"Take a deep breath" is the mantra of every anxiety-reducing advice list ever written. And for good reason. There's increasing physiological evidence connecting breathing patterns with the brain regions that control mood ...

Mechanism behind neuron death in motor neurone disease and frontotemporal dementia discovered

April 20, 2018
Scientists have identified the molecular mechanism that leads to the death of neurons in amyotrophic lateral sclerosis (also known as ALS or motor neurone disease) and a common form of frontotemporal dementia.

When there's an audience, people's performance improves

April 20, 2018
Often, people think performing in front of others will make them mess up, but a new study led by a Johns Hopkins University neuroscientist found the opposite: being watched makes people do better.

Signaling between neuron types found to instigate morphological changes during early neocortex development

April 20, 2018
A team of researchers from several institutions in Japan has found that developing neocortex neurons in mammals undergo a morphological transition from a multipolar shape to a bipolar shape due at least partially to signaling ...

MRI technique detects spinal cord changes in MS patients

April 20, 2018
A Vanderbilt University Medical Center-led research team has shown that magnetic resonance imaging (MRI) can detect changes in resting-state spinal cord function in patients with multiple sclerosis (MS).

Gene variant increases empathy-driven fear in mice

April 20, 2018
Researchers at the Center for Cognition and Sociality, within the Institute for Basic Science (IBS), have just published as study in Neuron reporting a genetic variant that controls and increases empathy-driven fear in mice. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.