Rare benign tumors hold the 'genetic recipe' to combat diabetes

October 3, 2017
Rare benign tumors hold the 'genetic recipe' to combat diabetes

Rare benign tumors known as insulinomas contain a complicated wiring diagram for regeneration of insulin-producing human beta cells, which may hold the key to diabetes drug development, researchers at the Icahn School of Medicine at Mount Sinai report.

The study, titled "Insights into Beta Cell Regeneration for Diabetes via Integration of Molecular Landscapes in Human Insulinomas," was published in an online study today in Nature Communications.

With the help of an international group of investigators, the Mount Sinai team collected 38 human insulinomas—rare pancreatic tumors that secrete too much insulin—and analyzed their genomics and expression patterns.

"For the first time, we have a genomic recipe—an actual wiring diagram in molecular terms that demonstrates how beta cells replicate," said Andrew Stewart, MD, Director of the Diabetes, Obesity, and Metabolism Institute at the Icahn School of Medicine and lead author of the study. Approximately 30 million people living in the United States have and nearly 50 to 80 million are living with prediabetes. Diabetes occurs when there are not enough beta cells in the pancreas, or when those beta cells secrete too little insulin, the hormone required to keep blood sugar levels in the normal range. Diabetes can lead to major medical complications: heart attack, stroke, kidney failure, blindness, and limb amputation.

Beta cell regeneration study. Credit: Mount Sinai Health System

Loss of has long been recognized as a cause of type 1 diabetes, in which the immune system mistakenly attacks and destroys beta cells. In recent years, researchers have concluded that a deficiency of functioning beta cells also contributes importantly to type 2 diabetes—the primary type that occurs in adults. Thus, developing drugs that can increase the number of healthy beta cells is a major priority in diabetes research.

"When you think of tumor genomics, you're thinking of breast cancer or colon cancer, leukemia, et cetera. No one is thinking of doing genomics on tumors that don't really kill people," said Dr. Stewart. "So the real innovation here is that we collected benign tumors that don't metastasize and don't cause great harm, and we're trying to use these that have beta cell regeneration going on in them, as the only reasonable source of genomic information on how to make beta cells regenerate."

Knowing where to look is one thing, but in the era of big data, knowing how to look is very important, said Carmen Argmann, PhD, Associate Professor of Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai and co-author of the paper. "In this case, we looked at millions of data points collected in rare human insulinomas to try and find an answer to a common disease, diabetes. We then computationally created two molecular pictures from that data, one from the insulinoma and one for the normal beta cell, and identified the critical differences that will hopefully lead to new ways to expand beta cell mass in diabetes patients. We plan to explore clinical applications of these new findings in close collaboration with the team at Sema4, a company specializing in big data analytics for diagnostic development."

In 2015, Dr. Stewart and his team published a paper in Nature Medicine showing that the drug harmine drove the sustained division and multiplication of adult human beta cells in culture, a feat that had eluded the field for years. In addition, they also learned that harmine treatment tripled the number of beta and led to better control of blood sugar in three groups of mice engineered to mimic human diabetes.

According to Dr. Stewart, the results of the harmine study provided a large body of evidence demonstrating that the harmine drug class can make human proliferate at levels that may be relevant for diabetes treatment. The new results confirm that harmine is one pathway to beta cell regeneration but also suggest a number of new pathways that can be treated with novel diabetes drugs. "We are excited and gratified by these remarkable results, which reveal an extraordinary array of new and validated pathways for diabetes drug development," said Dennis S. Charney, MD, Anne and Joel Ehrenkranz Dean, Icahn School of Medicine at Mount Sinai. "In a very short time, we have made terrific progress, and it is really a credit to the remarkably diverse areas of strength in biomedical research at Mount Sinai. It is truly an exciting set of discoveries for the field of diabetes."

Explore further: Pathways leading to beta cell division identified, may aid diabetes treatment

Related Stories

Pathways leading to beta cell division identified, may aid diabetes treatment

May 2, 2017
Pancreatic beta cells help maintain normal blood glucose levels by producing the hormone insulin—the master regulator of energy (glucose). Impairment and the loss of beta cells interrupts insulin production, leading to ...

Novel drug candidate regenerates pancreatic cells lost in diabetes

March 9, 2015
In a screen of more than 100,000 potential drugs, only one, harmine, drove human insulin-producing beta cells to multiply, according to a study led by researchers at the Icahn School of Medicine at Mount Sinai, funded by ...

Insulin release is controlled by the amount of Epac2A at the secretory vesicles

July 7, 2017
Specialized beta cells in the pancreas release the hormone insulin to control our blood glucose levels, and failure of this mechanism is central to the development of type-2 diabetes. How much and when insulin is released ...

Researchers identify new pathway to regenerate insulin-producing cells

September 21, 2015
Researchers at the University of Massachusetts Medical School have discovered a new pathway that triggers regeneration of beta cells in the pancreas, a key development that may aid in the development of diabetes treatments. ...

Scientists study how some insulin-producing cells survive in type 1 diabetes

February 9, 2017
A Yale-led research team identified how insulin-producing cells that are typically destroyed in type 1 diabetes can change in order to survive immune attack. The finding may lead to strategies for recovering these cells in ...

New type of insulin-producing cell discovered

April 4, 2017
In people with type I diabetes, insulin-producing beta cells in the pancreas die and are not replaced. Without these cells, the body loses the ability to control blood glucose. Researchers at the University of California, ...

Recommended for you

Personalized blood sugar goals can save diabetes patients thousands

December 11, 2017
A cost analysis by researchers at the University of Chicago Medicine shows treatment plans that set individualized blood sugar goals for diabetes patients, tailored to their age and health history, can save $13,546 in health ...

Kidney disease increases risk of diabetes, study shows

December 11, 2017
Diabetes is known to increase a person's risk of kidney disease. Now, a new study from Washington University School of Medicine in St. Louis suggests that the converse also is true: Kidney dysfunction increases the risk of ...

Type 2 diabetes is not for life

December 5, 2017
Almost half of the patients with Type 2 diabetes supported by their GPs on a weight loss programme were able to reverse their diabetes in a year, a study has found.

Skipping breakfast disrupts 'clock genes' that regulate body weight

November 30, 2017
Irregular eating habits such as skipping breakfast are often associated with obesity, type 2 diabetes, hypertension and cardiovascular disease, but the precise impact of meal times on the body's internal clock has been less ...

Type 2 diabetes has hepatic origins

November 28, 2017
Affecting as many as 650 million people worldwide, obesity has become one of the most serious global health issues. Among its detrimental effects, it increases the risk of developing metabolic conditions, and primarily type ...

Critical link between obesity and diabetes has been identified

November 28, 2017
UT Southwestern researchers have identified a major mechanism by which obesity causes type 2 diabetes, which is a common complication of being overweight that afflicts more than 30 million Americans and over 400 million ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.