A stronger twist to cytotoxic amyloid fibrils

October 24, 2017, University of Amsterdam
Amyloid fibrils. Credit: Universiteit van Amsterdam (UVA)

Researchers from Amsterdam and Enschede have for the first time performed a structural comparison of two types of amyloid fibrils that have been associated with Parkinson's disease. Using a combination of experimental methods they show that a cytotoxic C-terminal truncated form of the alpha-synuclein protein that is abundant in vivo, aggregates into more strongly twisted fibrils that are more exposed to water. The results have been published in the Journal of the American Chemical Society.

The research was carried out by PhD students Steven Roeters (Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, under the supervision of professor Sander Woutersen) and Aditya Iyer (AMOLF, under the supervision of professor Vinod Subramaniam, Vrije Universiteit Amsterdam), in cooperation with Vladimir Kogan and professor Mireille Claessens from the University of Twente (UT).

Using a combination of techniques, among which , UV-circular dichroism, X-ray diffraction and , the researchers performed a structural analysis to explain the differences in the aggregation of wild-type alpha-synuclein (WT-αS) and the so-called C-terminal truncated form of the protein lacking 32 amino acids at the C-terminal end (1-108-αS). The latter has recently been observed by other groups to be quite common in vivo. It forms aggregates more rapidly and has been associated with a progressive form of Parkinson's disease. 

The researchers conclude that fibrils formed by 1-108-αS are more-strongly twisted and that - perhaps due to the stronger twist - their fibril core is more exposed to water. The distance between the hydrogen-bonded protein sheets within the fibril appears to be greater. These differences between 1-108-αS and WT-αS fibrils are even so pronounced that WT-αS monomers do not grow into fibrils seeded from short pieces of 1-108-αS fibrils.

By elucidating the key structural aspects of the two fibrillar species, especially of the more cytotoxic 1-108-αS fibrils, the researchers hope to provide clues contributing to an understanding of molecular mechanisms underlying Parkinson's and other related amyloid diseases.

Explore further: Tracing the path of Parkinson's disease proteins

More information: Aditya Iyer et al. C-terminal truncated α-synuclein fibrils contain strongly twisted β-sheets, Journal of the American Chemical Society (2017). DOI: 10.1021/jacs.7b07403

Related Stories

Tracing the path of Parkinson's disease proteins

August 4, 2017
As neurodegenerative disorders such as Parkinson's and Alzheimer's disease progress, misfolded proteins clump together in neurons, recruiting normal proteins in the cell to also misfold and aggregate. Cells in which this ...

Researchers unlock the molecular origins of Alzheimer's disease

September 6, 2017
A "twist of fate" that is minuscule even on the molecular level may cause the development of Alzheimer's disease, VCU researchers have found.

Closer look at proteins involved in Parkinson's disease reveals segment involved in amyloid formation

September 10, 2015
(Medical Xpress)—A team of scientists from several research centers in the U.S. has taken a closer look at α-synuclein, a protein that is abundant in the human brain, and which is also involved in the development of Parkinson's ...

Tiny changes in Parkinson's protein can have 'dramatic' impact on processes behind onset

August 29, 2016
Specific mutations in the protein associated with Parkinson's Disease, in which just one of its 140 building blocks is altered, can make a dramatic difference to processes which may lead to the condition's onset, researchers ...

Recommended for you

New method maps the dopamine system in Parkinson's patients

February 14, 2018
With the aid of a PET camera, researchers from Karolinska Institutet in Sweden have developed a new method for investigating the dopamine system in the brains of patients suffering from Parkinson's disease. The method measures ...

Mechanism behind common Parkinson's mutation discovered

February 5, 2018
Northwestern Medicine investigators have discovered how a gene mutation results in buildup of a toxic compound known to cause Parkinson's disease symptoms, defining for the first time the mechanism underlying that aspect ...

Tactic for controlling motor symptoms of advanced Parkinson's disease

January 25, 2018
Standard drug treatment for Parkinson's disease can over time induce motor complications that reduce the effectiveness of restoring mobility. These complications include abnormal involuntary movements known as dyskinesias. ...

A new therapeutic avenue for Parkinson's disease

January 23, 2018
Systemic clearing of senescent astrocytes prevents Parkinson's neuropathology and associated symptoms in a mouse model of sporadic disease, the type implicated in 95% of human cases. Publishing in Cell Reports, researchers ...

Investigators eye new target for treating movement disorders

January 19, 2018
Blocking a nerve-cell receptor in part of the brain that coordinates movement could improve the treatment of Parkinson's disease, dyskinesia and other movement disorders, researchers at Vanderbilt University have reported.

Parkinson's disease 'jerking' side effect detected by algorithm

January 8, 2018
A mathematical algorithm that can reliably detect dyskinesia, the side effect from Parkinson's treatment that causes involuntary jerking movements and muscle spasms, could hold the key to improving treatment and for patients ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.