How bacteria in the gut influence neurodegenerative disorders

November 13, 2017

Humans have roughly as many bacterial cells in their bodies as human cells, and most of those bacteria live in the gut. New research released today reveals links between the gut microbiome—the population of microorganisms living in the gastrointestinal tract—and brain diseases such as Parkinson's and Alzheimer's, including potential new ways to track and treat these diseases. The studies were presented at Neuroscience 2017, the annual meeting of the Society for Neuroscience and the world's largest source of emerging news about brain science and health.

Almost 100 trillion microbes—some beneficial and some harmful—live in the at any time, helping to regulate immune function and inflammation, two factors hypothesized to play a role in neurodegenerative diseases like Parkinson's and Alzheimer's. As brain-focused cures for such diseases remain elusive, scientists are looking to the for new insight and novel strategies.

Today's new findings show that:

  • Metabolites derived from the microbiome block protein misfolding in test tubes and prevent neurodegeneration in a fly model of a disease related to Parkinson's, hinting that gut-derived metabolites may hold therapeutic promise (Lap Ho, abstract 573.23, see attached summary).
  • A rat model of Parkinson's disease displays increased levels of an inflammatory protein in the colon, identifying a possible new biomarker for the disease (Doris J. M. Doudet, abstract 133.13, see attached summary).
  • Nonhuman primates that received stomach injections of a protein associated with Parkinson's disease show signs of the disease in their brains, revealing that pathology can spread from the gut to the brain (Erwan Bezard, abstract 131.02, see attached summary).
  • A gene associated with risk for Alzheimer's disease influences the of mice, potentiating a novel treatment strategy (Ishita Parikh, abstract 476.02, see attached summary).
  • Probiotic treatment corrects memory problems in an Alzheimer's mouse model, suggesting that altering the microbiome may help delay the disease (Harpreet Kaur, abstract 126.23, see attached summary).

"The results presented today add to the growing body of evidence showing the influence of the gut on the brain and the crucial relationship between the two," said press conference moderator Tracy Bale, PhD, of the University of Maryland School of Medicine and Center for Brain Development and Maternal Mental Health. "Targeting the gut introduces a different and promising angle to tackle disorders across the lifespan."

Explore further: Harmful effects of stress on the brain and promising approaches for relief

Related Stories

Harmful effects of stress on the brain and promising approaches for relief

November 13, 2017
Stress can have numerous harmful effects on the mind and body, both immediately and over long periods of time. New research reveals mechanisms by which stress exacts its toll throughout the body, from the brain to the male ...

Studying sleep's profound and extensive effects on brain function

November 12, 2017
Although the general benefits of a good night's sleep are well established, one-third of American adults do not get a sufficient amount of sleep. Recent research sheds new light on the extensive effects of sleep on the brain, ...

Exploring the neural mechanisms behind social decision-making, cooperation, and aggression

November 13, 2017
Humans, primates, and many other animals are innately social, spending much of their lifetimes in the presence of other individuals, but little is known about the neural mechanisms that generate social behaviors. Recent advances ...

Innovative genetic and cellular techniques help identify multiple disease targets

November 12, 2017
Research released today highlights advances in the use of CRISPR-Cas9 and human induced pluripotent stem cell technologies to identify novel therapeutic targets for neurological disorders such as schizophrenia and addiction. ...

Military service members face unique and sustained threats to optimal brain health

November 12, 2017
Military service exposes soldiers to a unique set of physical challenges, including toxic chemicals and traumatic brain injury, which can have profound effects on their health and well-being. New research examines the effects ...

Research advances understanding of opioid addiction in face of public health crisis

November 13, 2017
As the United States grapples with the devastating effects of an opioid epidemic, researchers are making progress in advancing our understanding of opioid addiction-related health issues, according to studies presented today ...

Recommended for you

Study finds graspable objects grab attention more than images of objects do

December 15, 2017
Does having the potential to act upon an object have a unique influence on behavior and brain responses to the object? That is the question Jacqueline Snow, assistant professor of psychology at the University of Nevada, Reno, ...

Little understood cell helps mice see color

December 14, 2017
Researchers at the University of Colorado Anschutz Medical Campus have discovered that color vision in mice is far more complex than originally thought, opening the door to experiments that could potentially lead to new treatments ...

Scientists chart how brain signals connect to neurons

December 14, 2017
Scientists at Johns Hopkins have used supercomputers to create an atomic scale map that tracks how the signaling chemical glutamate binds to a neuron in the brain. The findings, say the scientists, shed light on the dynamic ...

Activating MSc glutamatergic neurons found to cause mice to eat less

December 13, 2017
(Medical Xpress)—A trio of researchers working at the State University of New York has found that artificially stimulating neurons that exist in the medial septal complex in mouse brains caused test mice to eat less. In ...

Gene mutation causes low sensitivity to pain

December 13, 2017
A UCL-led research team has identified a rare mutation that causes one family to have unusually low sensitivity to pain.

Scientists discover blood sample detection method for multiple sclerosis

December 13, 2017
A method for quickly detecting signs of multiple sclerosis has been developed by a University of Huddersfield research team.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.