Holding infants—or not—can leave traces on their genes

November 27, 2017, University of British Columbia
Michael Kobor, Professor of Medical Genetics at University of British Columbia and Investigator, BC Children's Hospital Research Institute Credit: UBC Faculty of Medicine

The amount of close and comforting contact between infants and their caregivers can affect children at the molecular level, an effect detectable four years later, according to new research from the University of British Columbia and BC Children's Hospital Research Institute.

The study showed that who had been more distressed as infants and had received less had a molecular profile in their cells that was underdeveloped for their age - pointing to the possibility that they were lagging biologically.

"In children, we think slower epigenetic aging might indicate an inability to thrive," said Michael Kobor, a Professor in the UBC Department of Medical Genetics who leads the "Healthy Starts" theme at BC Children's Hospital Research Institute.

Although the implications for childhood development and adult health have yet to be understood, this finding builds on similar work in rodents. This is the first study to show in humans that the simple act of touching, early in life, has deeply-rooted and potentially lifelong consequences on genetic expression.

The study, published last month in Development and Psychopathology, involved 94 healthy children in British Columbia. Researchers from UBC and BC Children's Hospital asked parents of 5-week-old babies to keep a diary of their infants' behavior (such as sleeping, fussing, crying or feeding) as well as the duration of caregiving that involved bodily contact. When the children were about 4 1/2 years old, their DNA was sampled by swabbing the inside of their cheeks.

The team examined a biochemical modification called DNA methylation, in which some parts of the chromosome are tagged with small molecules made of carbon and hydrogen. These molecules act as "dimmer switches" that help to control how active each gene is, and thus affect how cells function.

The extent of methylation, and where on the DNA it specifically happens, can be influenced by external conditions, especially in childhood. These also change in predictable ways as we age.

Scientists found consistent methylation differences between high-contact and low-contact children at five specific DNA sites. Two of these sites fall within genes: one plays a role in the immune system, and the other is involved in metabolism. However, the downstream effects of these on child development and health aren't known yet.

The children who experienced higher distress and received relatively little contact had an "epigenetic age" that was lower than would be expected, given their actual age. Such a discrepancy has been linked to poor health in several recent studies.

"We plan on following up to see whether the 'biological immaturity' we saw in these children carries broad implications for their health, especially their psychological development," says lead author Sarah Moore, a postdoctoral fellow. "If further research confirms this initial finding, it will underscore the importance of providing physical contact, especially for distressed infants."

Explore further: Epigenetics could help diagnose different types of cleft

More information: Sarah R. Moore et al, Epigenetic correlates of neonatal contact in humans, Development and Psychopathology (2017). DOI: 10.1017/S0954579417001213

Related Stories

Epigenetics could help diagnose different types of cleft

June 15, 2017
Cleft lip and/or palate are common birth defects and affect around 15 in every 10,000 births in Europe. New research by the University of Bristol from the largest study of cleft lip and/or palate in the world, the Cleft Collective, ...

Risk of obesity influenced by changes in our genes

April 25, 2017
These changes, known as epigenetic modifications, control the activity of our genes without changing the actual DNA sequence. One of the main epigenetic modifications is DNA methylation, which plays a key role in embryonic ...

Unraveling the gene-environment interaction

February 17, 2016
A special issue of the journal Child Development reports on studies that take important new steps in understanding how genes and the environment interact in shaping child behavior.

Unhealthy diet during pregnancy could be linked to ADHD

August 18, 2016
New research led by scientists from King's College London and the University of Bristol has found that a high-fat, high-sugar diet during pregnancy may be linked to symptoms of ADHD in children who show conduct problems early ...

Early epigenetic switches associated with childhood bone health

May 10, 2017
The health of children's bones could be determined before they are born, a new University of Southampton study has shown.

Epigenetic changes at birth could explain later behavior problems

June 12, 2017
Epigenetic changes present at birth - in genes related to addiction and aggression - could be linked to conduct problems in children, according to a new study by King's College London and the University of Bristol.

Recommended for you

New Tourette disorder genes come to light

September 25, 2018
In the largest DNA sequencing study of Tourette Disorder (TD) to date, UC San Francisco researchers and their collaborators have unearthed new data suggesting a potential role for disruptions in cell polarity in the development ...

Genetic testing: Not a one-and-done deal

September 25, 2018
Genetic testing can play a substantial role in medical management by uncovering changes in genes that are associated with an increased risk for hereditary cancers. A new research study from investigators at UT Southwestern ...

Genetic determinants of telomere length in African American youth

September 25, 2018
Telomeres are DNA-protein structures that play a vital role in maintaining DNA stability and integrity. Telomere length (TL) is an important biomarker of aging and overall health, but TL has been mostly studied in adult populations ...

Thousands of unknown DNA changes in the developing brain revealed by machine learning

September 24, 2018
Unlike most cells in the rest of our body, the DNA (the genome) in each of our brain cells is not the same: it varies from cell to cell, caused by somatic changes. This could explain many mysteries—from the cause of Alzheimer's ...

Mitochondrial diseases could be treated with gene therapy, study suggests

September 24, 2018
Researchers have developed a genome editing tool for the potential treatment of mitochondrial diseases: serious and often fatal conditions which affect 1 in 5,000 people.

Height may be risk factor for varicose veins, study finds

September 24, 2018
The taller you are, the more likely you are to develop varicose veins, according to a study led by Stanford University School of Medicine researchers that examined the genes of more than 400,000 people in search of clues ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.