Neuroscientists find chronic stress skews decisions toward higher-risk options

November 16, 2017, Massachusetts Institute of Technology
Credit: CC0 Public Domain

Making decisions is not always easy, especially when choosing between two options that have both positive and negative elements, such as deciding between a job with a high salary but long hours, and a lower-paying job that allows for more leisure time.

MIT neuroscientists have now discovered that making decisions in this type of situation, known as a cost-benefit conflict, is dramatically affected by . In a study of mice, they found that stressed animals were far likelier to choose high-risk, high-payoff options.

The researchers also found that impairments of a specific brain circuit underlie this abnormal , and they showed that they could restore normal behavior by manipulating this circuit. If a method for tuning this circuit in humans were developed, it could help patients with disorders such as depression, addiction, and anxiety, which often feature poor -making.

"One exciting thing is that by doing this very basic science, we found a microcircuit of neurons in the striatum that we could manipulate to reverse the effects of stress on this type of decision making. This to us is extremely promising, but we are aware that so far these experiments are in rats and mice," says Ann Graybiel, an Institute Professor at MIT and member of the McGovern Institute for Brain Research.

Graybiel is the senior author of the paper, which appears in Cell on Nov. 16. The paper's lead author is Alexander Friedman, a McGovern Institute research scientist.

Hard decisions

In 2015, Graybiel, Friedman, and their colleagues first identified the brain circuit involved in decision making that involves cost-benefit conflict. The circuit begins in the medial , which is responsible for mood control, and extends into clusters of neurons called striosomes, which are located in the striatum, a region associated with habit formation, motivation, and reward reinforcement.

In that study, the researchers trained rodents to run a maze in which they had to choose between one option that included highly concentrated chocolate milk, which they like, along with bright light, which they don't, and an option with dimmer light but weaker chocolate milk. By inhibiting the connection between cortical neurons and striosomes, using a technique known as optogenetics, they found that they could transform the rodents' preference for lower-risk, lower-payoff choices to a preference for bigger payoffs despite their bigger costs.

In the new study, the researchers performed a similar experiment without optogenetic manipulations. Instead, they exposed the rodents to a short period of stress every day for two weeks.

Before experiencing stress, normal rats and mice would choose to run toward the maze arm with dimmer light and weaker chocolate milk about half the time. The researchers gradually increased the concentration of chocolate milk found in the dimmer side, and as they did so, the animals began choosing that side more frequently.

However, when chronically stressed rats and mice were put in the same situation, they continued to choose the bright light/better chocolate milk side even as the concentration greatly increased on the dimmer side. This was the same behavior the researchers saw in rodents that had the prefrontal cortex-striosome circuit disrupted optogenetically.

"The result is that the animal ignores the high cost and chooses the high reward," Friedman says.

Circuit dynamics

The researchers believe that this circuit integrates information about the good and bad aspects of possible choices, helping the brain to produce a decision. Normally, when the circuit is turned on, neurons of the prefrontal cortex activate certain neurons called high-firing interneurons, which then suppress striosome activity.

When the animals are stressed, these circuit dynamics shift and the fire too late to inhibit the striosomes, which then become overexcited. This results in abnormal decision making.

"Somehow this prior exposure to chronic stress controls the integration of good and bad," Graybiel says. "It's as though the animals had lost their ability to balance excitation and inhibition in order to settle on reasonable behavior."

Once this shift occurs, it remains in effect for months, the researchers found. However, they were able to restore normal decision making in the stressed mice by using optogenetics to stimulate the high-firing interneurons, thereby suppressing the striosomes. This suggests that the prefronto-striosome circuit remains intact following chronic stress and could potentially be susceptible to manipulations that would restore normal behavior in human patients whose disorders lead to abnormal decision making.

"This state change could be reversible, and it's possible in the future that you could target these interneurons and restore the excitation-inhibition balance," Friedman says.

Explore further: How we make emotional decisions

Related Stories

How we make emotional decisions

May 28, 2015
Some decisions arouse far more anxiety than others. Among the most anxiety-provoking are those that involve options with both positive and negative elements, such choosing to take a higher-paying job in a city far from family ...

Newly discovered neural connections may be linked to emotional decision-making

September 20, 2016
MIT neuroscientists have discovered connections deep within the brain that appear to form a communication pathway between areas that control emotion, decision-making, and movement. The researchers suspect that these connections, ...

Brain circuit enables split-second decisions when cues conflict

April 24, 2017
When animals hunt or forage for food, they must constantly weigh whether the chance of a meal is worth the risk of being spotted by a predator. The same conflict between cost and benefit is at the heart of many of the decisions ...

Neuroscientists identify class of cortical inhibitory neurons that specialize in disinhibition

October 6, 2013
New research now reveals that one class of inhibitory neurons—called VIP interneurons—specializes in inhibiting other inhibitory neurons in multiple regions of cortex, and does so under specific behavioral conditions. ...

New insights into the roles of different subareas in the prefrontal cortex

February 10, 2017
Whether the brain responds to an external stimulus or not depends significantly on the balance between areas of excitation and inhibition in the prefrontal cortex (PFC). Synaptic connections in the front of the cerebral cortex ...

Breaking habits before they start

June 27, 2013
Our daily routines can become so ingrained that we perform them automatically, such as taking the same route to work every day. Some behaviors, such as smoking or biting your fingernails, become so habitual that we can't ...

Recommended for you

Neurons with good housekeeping are protected from Alzheimer's

December 17, 2018
Some neurons in the brain protect themselves from Alzheimer's with a cellular cleaning system that sweeps away toxic proteins associated with the disease, according to a new study from Columbia University and the University ...

Measuring speed of mental replay of movies gives new insight into accessing memories

December 17, 2018
Researchers have discovered that 'fully detailed' memories are stored in the /, but people access this information at different speeds and levels of detail, with people accessing memories 'forward' that is recalling older ...

Tuning arousal to boost information transmission in the brain

December 17, 2018
Columbia neural engineers discover a mechanism by which the locus coeruleus modulates information processing in the thalamus; their findings of how sensory information is encoded in the healthy brain may lead to new treatments ...

Gently stroking babies before medical procedures may reduce pain processing

December 17, 2018
Researchers found that gently stroking a baby seems to reduce activity in the infant brain associated with painful experiences. Their results, appearing December 17 in the journal Current Biology, suggest that lightly brushing ...

Tiny implantable device short-circuits hunger pangs, aids weight loss

December 17, 2018
More than 700 million adults and children worldwide are obese, according to a 2017 study that called the growing number and weight-related health problems a "rising pandemic."

Discovery of a novel way synapses can regulate neuronal circuits

December 17, 2018
The fundamental process of information transfer from neuron to neuron occurs through a relay of electrical and chemical signaling at the synapse, the junction between neurons. Electrical signals, called action potentials, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.