Scientists identify novel therapeutic targets for metastatic melanoma

November 27, 2017, The Mount Sinai Hospital
Melanoma in skin biopsy with H&E stain — this case may represent superficial spreading melanoma. Credit: Wikipedia/CC BY-SA 3.0

Mount Sinai researchers have identified novel therapeutic targets for metastatic melanoma, according to a study published in Molecular Cell.

The study focused on a gene called AMIGO2 and its partner, called PTK7. Scientists' understanding of AMIGO2's role in has been limited until now, but the researchers discovered that AMIGO2 and PTK7 is required for cells to grow and survive.

This research also identified a path forward to develop small molecule inhibitors or antibodies against AMIGO2 and PTK7, which are both found on the melanoma cell's membrane. Targeted therapies against PTK7 have already been successfully tested in phase 1 clinical trials for solid tumors, so the groundwork has already been laid in developing similar drugs for melanoma.

"Melanoma is the most aggressive form of skin cancer, affecting more and more patients," according to the study's senior author, Emily Bernstein, PhD, Associate Professor of Oncological Sciences and Dermatology at The Tisch Cancer Institute at the Icahn School of Medicine at Mount Sinai. "While immunotherapy and targeted therapies have significantly improved the outcome for some patients, they have had success in a small subset of patients and can cause significant toxic side effects. Thus, their limitations underscore the need for new therapies, highlighting the importance of this research's discovery of novel targets."

The researchers made their discoveries by studying BET proteins, which regulate gene expression in cancer, and their regulation of AMIGO2. When melanoma is growing, the amount of AMIGO2 increases; silencing its function significantly impairs melanoma's growth. In addition, AMIGO2 regulates PTK7 function and PTK7 is also required for melanoma cell survival, so targeting AMIGO2 and PTK7 would also disrupt melanoma's growth.

This study also discovered the potential to identify additional tumor-promoting and other therapeutic targets in melanoma by studying other BET target genes.

Explore further: Discovery may lead to targeted melanoma therapies

Related Stories

Discovery may lead to targeted melanoma therapies

June 17, 2015
Melanoma patients with high levels of a protein that controls the expression of pro-growth genes are less likely to survive, according to a study led by researchers at Icahn School of Medicine at Mount Sinai and published ...

Tumor-infiltrating B lymphocytes promote melanoma progression and resistance to therapy

September 19, 2017
In a multi-institutional collaborative study, scientists at The Wistar Institute and the Medical University of Vienna, Austria, have identified the role of tumor-infiltrating or tumor-associated B-cells ("TABs") in melanoma ...

Link established between a molecular driver of melanoma and novel therapeutic agent

September 7, 2017
Results of a study by The Wistar Institute have described a correlation between a key melanoma signaling pathway and a novel class of drugs being tested in the clinic as adjuvant therapy for advanced melanoma, providing useful ...

Epigenetic changes promoting cancer metastasis identified

December 21, 2016
Latest University of Otago research is shedding new light on why and how cancer cells spread from primary tumours to other parts of the body. This phenomenon – known as metastasis – causes about 90 per cent of all cancer ...

New insight into drug resistance in metastatic melanoma

June 3, 2014
(Medical Xpress)—A study by scientists in Manchester has shown how melanoma drugs can cause the cancer to progress once a patient has stopped responding to treatment.

Scientists identify gene that regulates the growth of melanoma

February 29, 2016
Yale Cancer Center researchers have identified a gene in melanoma that can dramatically affect the growth of the disease. The findings, published in the journal Cell Reports, provide new insight into how melanoma grows and ...

Recommended for you

Study tracks evolutionary transition to destructive cancer

February 23, 2018
Evolution describes how all living forms cope with challenges in their environment, as they struggle to persevere against formidable odds. Mutation and selective pressure—cornerstones of Darwin's theory—are the means ...

Researchers use a molecular Trojan horse to deliver chemotherapeutic drug to cancer cells

February 23, 2018
A research team at the University of California, Riverside has discovered a way for chemotherapy drug paclitaxel to target migrating, or circulating, cancer cells, which are responsible for the development of tumor metastases.

Lab-grown 'mini tumours' could personalise cancer treatment

February 23, 2018
Testing cancer drugs on miniature replicas of a patient's tumour could help doctors tailor treatment, according to new research.

An under-the-radar immune cell shows potential in fight against cancer

February 23, 2018
One of the rarest of immune cells, unknown to scientists a decade ago, might prove to be a potent weapon in stopping cancer from spreading in the body, according to new research from the University of British Columbia.

Putting black skin cancer to sleep—for good

February 22, 2018
An international research team has succeeded in stopping the growth of malignant melanoma by reactivating a protective mechanism that prevents tumor cells from dividing. The team used chemical agents to block the enzymes ...

Cancer risk associated with key epigenetic changes occurring through normal aging process

February 22, 2018
Some scientists have hypothesized that tumor-promoting changes in cells during cancer development—particularly an epigenetic change involving DNA methylation—arise from rogue cells escaping a natural cell deterioration ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.