Three-dimensional folding of DNA provides important epigenetic mechanisms in the formation of cardiac muscle cells

November 21, 2017, University of Freiburg
The interplay between three-dimensional folding of DANN and epigenetic markers in cardiomyocytes. Credit: Institute for Experimental and Clinical Pharmacology and Toxicology

During differentiation of pluripotent stem cells to cardiomyocytes, the three-dimensional folding of the DNA reorganizes itself. This reorganization of the DNA architecture precedes and defines important epigenetic patterns. A team lead by private lecturer Dr. Ralf Gilsbach and Stephan Nothjunge, who both conduct research at the University of Freiburg in the Department of Experimental and Clinical Pharmacology and Toxicology headed by Prof. Dr. Lutz Hein, have come to this conclusion. The results suggest that the genome's spatial organization is an important switch for defining cell types, thereby representing a very promising starting point for future reprogramming strategies. The team recently published its results in the scientific journal Nature Communications.

The genome stores information about an organisms development. Each cell carries this information tightly packed on a two-meter long DNA strand in the cell nucleus and specific epigenetic mechanisms control access to the 'blueprint of life'. Because every cell type in a mammalian organism requires access to genomic areas in a tempo-spatial specific manner, the epigenome is crucial for determining cellular identity. It is already known that various epigenetic mechanisms are associated with cell . Particularly indispensable is the methylation of DNA, in which methyl groups are attached to specific nucleotides of double-stranded DNA. Recent studies also show that differentiation processes are accompanied by a reorganization of the three-dimensional folding of the DNA. Up until now, however, it has been unclear what comes first during cardiomyocyte differentiation: the reorganization of the DNA's folding in the cellular nucleus or the DNA's methylation - and whether these mechanisms are dependent on one another.

In order to address this question, the team lead by the Freiburg pharmacologists used modern sequencing methods. These made it possible to map the three-dimensional genome organization as well as epigenetic mechanisms during the differentiation of cardiomyocytes across the entire genome. For this purpose, the researchers established methods for isolating cardiomyocytes in various developmental stages from healthy mouse hearts. This cell-type-specific analysis was essential to demonstrate that there is a close interplay between and the spatial folding of the DNA in the cardiomyocytes' nucleus. The comparison of different stages of development showed that the type of spatial folding of DNA defines which methylation patterns are formed and which genes are activated. The researchers proved that the spatial arrangement of the DNA is not dependent on the DNA methylation with , among other things, that have no DNA methylation at all. The three-dimensional genome organization is thus a central switchboard for determining cellular identity. In the future, the researchers want to use this switch to control cellular functions.

Explore further: Important mechanism of epigenetic gene regulation identified

More information: Stephan Nothjunge et al, DNA methylation signatures follow preformed chromatin compartments in cardiac myocytes, Nature Communications (2017). DOI: 10.1038/s41467-017-01724-9

Related Stories

Important mechanism of epigenetic gene regulation identified

October 30, 2017
How can defective gene activity leading to cancerbe avoided? Researchers at the University of Zurich have now identified a mechanism by which cells pass on the regulation of genetic information through epigenetic modifications. ...

Team maps genome organization to link retinal development and retinoblastoma

May 4, 2017
A team from the St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project (PCGP) has mapped the intricate changes in the "epigenetic" organization of the nucleus to determine how retinal ...

Pharmacologists identify switches that play an important role for the cardiac gene program

October 28, 2014
Freiburg pharmacologists have succeeded in mapping the epigenome of cardiac muscle cells. They hope the findings will lead to new insights into the development of congenital heart defects and chronic heart failure. The scientists ...

Epigenetics and neural cell death

October 26, 2016
Ludwig-Maximilians-Universitaet researchers have demonstrated how deregulation of an epigenetic mechanism that is active only in the early phases of neurogenesis triggers the subsequent death of neural cells.

Recommended for you

Importance of cell cycle and cellular senescence in the placenta discovered

October 15, 2018
Working with researchers from Stanford University and St. Anna Children's Cancer Research, researchers from Jürgen Pollheimer's laboratory at the Medical University of Vienna's Department of Obstetrics and Gynecology have ...

Team's study reveals hidden lives of medical biomarkers

October 12, 2018
What do medical biomarkers do on evenings and weekends, when they might be considered off the clock?

Researchers find a 'critical need' for whole genome sequencing of young cancer patients

October 12, 2018
St. Jude Children's Research Hospital has re-defined the gold standard for diagnostic testing of childhood cancer patients in the precision-medicine era and has implemented the testing for new cancer patients. The findings ...

Novel genetic study sheds new light on risk of heart attack

October 12, 2018
Loss of a protein that regulates mitochondrial function can greatly increase the risk of myocardial infarction (heart attack), Vanderbilt scientists reported Oct. 3 in the journal eLife.

Study: DNA websites cast broad net for identifying people

October 11, 2018
About 60 percent of the U.S. population with European heritage may be identifiable from their DNA by searching consumer websites, even if they've never made their own genetic information available, a study estimates.

First two papers based on studies using full set of data in the UK Biobank published

October 11, 2018
Two teams of researchers have independently published papers describing research conducted using the full set of data in the UK Biobank—both in the journal Nature. The first team comprised researchers from the U.K., Australia ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.