Researchers uncover genetic basis of natural variation in aging rate

November 10, 2017

Aging is characterized by a progressive decline in physiological functions and is a major risk factor for neurodegenerative disorders, cancer and diabetes. Previous studies on aging mainly focused on the regulation of longevity, and more than 100 genes and numerous small compounds have been identified that regulate lifespan in organisms from yeast to mammals.

Lifespan extension induced by genetic mutations has been shown in recent studies not to delay age-related behavioral decline, suggesting that longevity and behavioral aging may be two dissociable processes. With the increase of life expectancy, prevention of age-related functional impairment has emerged as a major challenge. Despite the great advances in genetic control of animal lifespan, little was known about the regulatory mechanisms of , i.e., aging with limited loss of physiological function.

Now, a new study carried out by researchers from Dr. CAI Shiqing's lab at the Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology of the Chinese Academy of Sciences has uncovered a genetic basis for in aging rates. The study was published in Nature.

The rate of aging is highly variable among individuals. It is believed that this variation is governed by environmental and genetic factors. Despite great interest in studying natural variation in aging rates to identify factors that control healthy aging, no such factor had been found. In order to explore this question, researchers from Dr. CAI Shiqing's lab studied the genetic origin of variability in the rate of aging using Caenorhabditis elegans as an animal model.

C. elegans is a tiny, free-living nematode, about 1 mm in length. Due to its short lifespan and clear genetic background, C. elegans has been widely used in aging research. Many conserved longevity pathways were first identified in C. elegans.

Natural isolates of C. elegans from different parts of the world were shown in this research to have distinct rates of decline in virility, feeding behavior and locomotion during aging. The researchers found that genetic variations in a novel neuropeptide coding gene (rgba-1) and its receptor gene npr-28 regulate the aging rate of worm behavior among wild isolates.

RGBA-1 from glial cells activates NPR-28 signaling in serotonergic and dopaminergic neurons to regulate behavioral decline in aging animals. The function of RGBA-1/NPR-28 signaling on behavioral aging depends on SIR-2.1-mediated activation of the mitochondrial unfolded protein response, a pathway known to modulate aging.

The researchers also performed population genetic analysis of rgba-1 and npr-28 and found that the two might have been subjected to a recent selective sweep, a natural selection process that leads to the reduction or elimination of genetic variations among individuals.

This study reveals the first genetic pathway underlying natural variation in the rate of aging, and uncovers the important role of neuropeptide-mediated glia-neuron signaling in controlling the aging rate. Further studies on natural variation in the rate of aging will pave the way for a comprehensive understanding of the biological regulation of healthy aging.

The antagonistic pleiotropy theory of the evolution of aging, proposed by George Williams in 1957, suggested that naturally selected genes promote survival and reproductive success in early life, but accelerate aging in later life. In contrast, this study suggests that the evolutionary selection of genes that offer benefits in early life could also result in a concomitant extension of lifespan or extension of health span, or both.

This research indicates that aging rates may have been affected by the emergence of new genes, natural selection, and interaction between different genetic loci, thus providing new insights into the evolutionary theory of aging.

Explore further: Researchers identify patterns of protein synthesis associated with increased longevity

More information: Jiang-An Yin et al, Genetic variation in glia–neuron signalling modulates ageing rate, Nature (2017). DOI: 10.1038/nature24463

Related Stories

Researchers identify patterns of protein synthesis associated with increased longevity

February 23, 2017
Aging is a complex process that involves multiple metabolic and regulatory pathways. Previous studies have identified hundreds of genes whose deletion can significantly increase lifespan in model organisms. Yet, how these ...

Yeast mutants unlock the secrets of aging

January 31, 2017
Yeast—it's more than just a fungus. It can also tell us a lot about growing older.

RNA and longevity: Discovering the mechanisms behind aging

March 9, 2017
The vigors of youth and the greener pastures of yesteryears. Some might refer to these and other similar clichés as nothing more than rose-tinted literations of the past; a cognitive side effect of life. Romanticizing collective ...

Recommended for you

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.