Unique approach to treatment of rare and aggressive blood cancers

November 14, 2017 by Julia Short, Cardiff University
Credit: CC0 Public Domain

A unique approach to targeting the abnormal T-cells that cause T-cell lymphomas could offer hope to patients with the aggressive and difficult-to-treat family of cancers, finds a study involving researchers from Cardiff University.

The team of researchers, working with biopharmaceutical company Autolus Ltd, have discovered a method of targeting the cancer without destroying healthy T-cells, essential to the immune system.

Lymphomas arise when immune cells, called lymphocytes, that protect us against germs, become cancerous. There are two types of lymphocytes: B-cells and T-cells. Recent developments, including immunotherapies, have transformed the once fatal diagnosis of B-cell lymphoma into a curable condition but there remains a critical need for new therapeutic approaches to the rarer, but often more aggressive, T-cell lymphoma.

A key challenge of treating these cancers has been to identify a way of eliminating the abnormal T-cells whilst sparing the healthy ones that play an essential role in providing protection against infections.

T-cells recognize and remove germs using a molecule on their surface called the T-cell receptor. This receptor is made using one of two duplicated copies of the T-cell receptor gene, called C1 or C2, at random. As a result, the T-cells we use to fight off viruses and other germs are a near equal mixture of cells using either the C1 or C2 genes. When a T-cell becomes cancerous all the cancer arises from a single cell so that the cancer is either all C1 or C2.

The research team have engineered a way to eliminate T-cells based on whether they use the C1 or C2 gene. The team demonstrate that targeting of C1 T-cells can kill C1 cancers while leaving all normal C2 T-cells unharmed so that they can take care of infections.

Professor Andrew Sewell from Cardiff University's School of Medicine said: "We wouldn't last a week without the essential job our T-cells perform by protecting us from infection. The devastating effects of low numbers of just one type of T-cell are all too evident in HIV/AIDS.

"T-cell lymphomas are particularly difficult to treat without damaging essential, healthy T-cells that are vital to the immune system. The new and innovative approach that Autolus have developed now allows potential for removal of all cancer cells without causing any damage to half of our T-cells. Since T-cells select use of the C1 or C2 gene at random, this remaining half of T-cells are capable of providing immunity to the pathogens we encounter every day."

Dr Justine Alford from Cancer Research UK, said: "This study has demonstrated it's possible to kill cancerous T-cells but importantly spare some healthy ones, opening up exciting new treatment possibilities. T cells are a vital part of our immune system and our survival; that's why when a patient has a in these cells, it would cause serious harm to use a therapy that targets both healthy T cells and cancerous ones.

"This research is still in the experimental phase though, so researchers will need to do further studies to prove the method is safe and effective before starting clinical trials in people."

The full manuscript, "Targeting T-cell receptor β-constant for immunotherapy of T-cell malignancies," can be found in Nature Medicine.

Explore further: Cell mechanism discovery could lead to 'fundamental' change in leukaemia treatment

More information: Paul M Maciocia et al. Targeting the T cell receptor β-chain constant region for immunotherapy of T cell malignancies, Nature Medicine (2017). DOI: 10.1038/nm.4444

Related Stories

Cell mechanism discovery could lead to 'fundamental' change in leukaemia treatment

July 27, 2017
Researchers have identified a new cell mechanism that could lead to a fundamental change in the diagnosis and treatment of leukaemia.

'Super T cells' engineered for optimal performance drive new gene-therapy approach

November 3, 2017
Researchers at Roswell Park Cancer Institute have initiated a clinical trial based on a unique two-pronged strategy for arming the immune system to more effectively attack cancer cells. Patients treated through this early-stage ...

The STING of death in T cells

September 5, 2017
The cells of the innate immune system use a signaling pathway comprising STING (Stimulator of interferon genes) to detect DNA from invading viruses and fight them. However, it is unknown if STING triggers the same or different ...

A new T-cell population for cancer immunotherapy

May 23, 2017
Scientists at the University of Basel in Switzerland have, for the first time, described a new T cell population that can recognize and kill tumor cells. The open access journal eLife has published the results.

Depleting CAR T cells after tumor treatment reverses B cell deficiency in mice

October 17, 2016
Genetically engineered T cells, or CAR T cells, represent a promising approach to treat multiple types of cancer. These therapies can eliminate tumors by targeting specific markers that are expressed on different cancer cell ...

Researchers makes 'natural born killer' cell discovery

August 31, 2017
An unexpected role for a white blood cell called the Natural Killer (NK) cell - a critical cell for ridding the body of infection and cancer, has been discovered by researchers at New Zealand's University of Otago.

Recommended for you

New approach attacks 'undruggable' cancers from the outside in

January 23, 2018
Cancer researchers have made great strides in developing targeted therapies that treat the specific genetic mutations underlying a patient's cancer. However, many of the most common cancer-causing genes are so central to ...

Study: Cells of three advanced cancers die with drug-like compounds that reverse chemo failure

January 23, 2018
Researchers at Southern Methodist University have discovered three drug-like compounds that successfully reverse chemotherapy failure in three of the most commonly aggressive cancers—ovarian, prostate and breast.

'Hijacker' drives cancer in some patients with high-risk neuroblastoma

January 23, 2018
Researchers have identified mechanisms that drive about 10 percent of high-risk neuroblastoma cases and have used a new approach to show how the cancer genome "hijacks" DNA that regulates other genes. The resulting insights ...

Enzyme inhibitor combined with chemotherapy delays glioblastoma growth

January 23, 2018
In animal experiments, a human-derived glioblastoma significantly regressed when treated with the combination of an experimental enzyme inhibitor and the standard glioblastoma chemotherapy drug, temozolomide.

Researchers identify a protein that keeps metastatic breast cancer cells dormant

January 23, 2018
A study headed by ICREA researcher Roger Gomis at the Institute for Research in Biomedicine (IRB Barcelona) has identified the genes involved in the latent asymptomatic state of breast cancer metastases. The work sheds light ...

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.