New gene therapy transplantation technique could improve treatment of neurodegenerative diseases

December 6, 2017, Children's Hospital Boston
A reconstruction of a sagittal brain section of a mouse that received transplantation of HSPCs (green) through intra-cerebral ventricle injection. The image shows an abundance of progeny cells from the transplanted HSPCs. Credit: Capotondo et al., Sci. Adv. 2017;3: e1701211

A therapeutic technique to transplant blood-forming (hematopoietic) stem cells directly into the brain could herald a revolution in our approach to treating central nervous system diseases and neurodegenerative disorders.

The technique, which could be used to transplant donor-matched hematopoietic stem cells (HSCs) or a patient's own genetically-engineered HSCs into the brain, was reported in Science Advances today by researchers from the Dana-Farber/Boston Children's Cancer and Blood Disorders Center and the San Raffaele Telethon Institute for Gene Therapy.

In their study, the team tested the technique in a mouse model to treat lysosomal storage disorders, a group of severe metabolic disorders that affect the central nervous system.

The team's findings are groundbreaking because, until now, it was thought that HSCs—from a healthy, matched donor or a patient's own genetically-corrected cells—needed to be transplanted indirectly, through an intravenous line to the bloodstream.

Therapeutic success has then depended on those cells engrafting in a patient's bone marrow, maturing and naturally circulating into the brain, at a very slow and inefficient rate.

A race against time

But in children with lysosomal storage disorders, caused by enzyme imbalances that result in a dangerous build-up of lipids, carbohydrates or other materials in the body's cells, time is of the essence to stop the disease's progression.

"The main issue with the conventional HSC transplant strategy has been the length of time needed for the therapy to take effect in the brain," says Alessandra Biffi, MD, director of the gene therapy program at Dana-Farber/Boston Children's and the senior author of the new study.

"It can take up to a year for the genetically-engineered cell lineage to proliferate, spread and produce therapeutic effects in the brain—oftentimes, patients don't have the luxury of time to wait," Biffi adds.

Morphological and surface marker characteristics of new cells arising from transplanted HSPCs in the lateral ventricles of recipient mice. Credit: Capotondo et al., Sci. Adv. 2017;3: e1701211

Biffi and her team wanted to find a faster—and more direct—way to transplant therapeutic HSCs into the brain.

In a mouse model of lysosomal storage disorders, Biffi's team transplanted HSCs—which they had genetically engineered to correct the enzyme imbalance—directly into the brain. They found the direct approach jumpstarted the therapeutic benefits much faster than intravenous infusion alone. They call their method, which infuses the cells into fluid-filled cavities in the brain called ventricles, "intracerebroventricular" delivery.

Creating a chimera

Once the genetically-engineered HSCs are transplanted into the brain's ventricles, the crucial enzyme they contain helps to metabolize the materials that were previously building up and causing tissue damage.

A new lineage of cells descended from the transplanted HSCs—a type of cell called a myeloid—begin to scavenge and consume the excess material that is responsible for neurodegeneration.

"There's a positive impact from the presence of the new, metabolically-functional myeloid cells because they release signaling cytokines that counteract neuroinflammation, which if unchecked can trigger neuronal damage," Biffi says.

Importantly, the transplanted HSCs engraft in the mouse brains without migrating to other areas of the central nervous system. This essentially could create a chimera—a separate genetic profile within an organism—within the brain.

The ability to engineer a chimeric population of brain cells could open powerful new avenues to preventing or reversing neurodegenerative diseases like Parkinson's, Alzheimer's, ALS and more.

From the lab to the human brain

Although transplanting HSCs directly into the human brain sounds invasive at first, Biffi explains that the procedure would not be overly complex in actuality.

"I envision this could be a one-time treatment accomplished via a catheter temporarily placed into the brain's ventricles, under standard anesthesia," Biffi says. "This would be in line with currently-used clinical procedures that enable access to the brain for treatment."

Based on the promising results of their mouse studies, Biffi and her colleagues are moving forward with plans to develop the procedure for the clinic.

She says there is great potential for intracerebroventricular delivery of genetically-modified HSCs, alone or in combination with intravenous gene therapies. This approach would be a new tool for clinicians to treat a range of conditions that affect the brain or the entire nervous system.

Explore further: Blood-clotting protein prevents repair in the brain

More information: A. Capotondo el al., "Intracerebroventricular delivery of hematopoietic progenitors results in rapid and robust engraftment of microglia-like cells," Science Advances (2017). DOI: 10.1126/sciadv.1701211 , advances.sciencemag.org/content/3/12/e1701211

Related Stories

Blood-clotting protein prevents repair in the brain

November 2, 2017
Picture a bare wire, without its regular plastic coating. It's exposed to the elements and risks being degraded. And, without insulation, it may not conduct electricity as well as a coated wire. Now, imagine this wire is ...

New model may provide insights on neurocognitive disorders caused by HIV

November 8, 2017
HIV infects certain cells in the brain called microglia, and infected microglia release toxic and inflammatory molecules that can impair or kill surrounding neurons. Researchers have been limited in their ability to study ...

Advances in stem cell therapy to treat neurogenetic diseases

September 21, 2016
Transplantation of therapeutic stem cells directly into the central nervous system (CNS) is a promising new approach to treating the neurological effects of lysosomal storage diseases (LSD), a group of at least 50 different ...

Stem cell transplants may advance ALS treatment by repair of blood-spinal cord barrier

May 15, 2017
Researchers at the University of South Florida show in a new study that bone marrow stem cell transplants helped improve motor functions and nervous system conditions in mice with the disease Amyotrophic Lateral Sclerosis ...

Skin stem cells used to generate new brain cells

April 25, 2017
Using human skin cells, University of California, Irvine neurobiologists and their colleagues have created a method to generate one of the principle cell types of the brain called microglia, which play a key role in preserving ...

Safety data support human testing of hematopoietic stem cell gene therapy for mucopolysaccharid I

October 6, 2016
Extensive biosafety studies of hematopoietic stem cell (HSC) gene therapy, intended to replace a protein that patients with the inherited disease mucopolysaccaridosis I (MPS I) cannot produce, support clinical testing of ...

Recommended for you

Basic research in fruit flies leads to potential drug for diseases afflicting millions

July 13, 2018
River blindness and elephantiasis are debilitating diseases caused by parasitic worms that infect as many as 150 million people worldwide. They are among the "neglected tropical diseases" for which better treatments are desperately ...

Light based cochlear implant restores hearing in gerbils

July 12, 2018
A team of researchers with members from a variety of institutions across Germany has developed a new type of cochlear implant—one based on light. In their paper published in the journal Science Translational Medicine, the ...

Researchers discover gene that controls bone-to-fat ratio in bone marrow

July 12, 2018
In an unexpected discovery, UCLA researchers have found that a gene previously known to control human metabolism also controls the equilibrium of bone and fat in bone marrow as well as how an adult stem cell expresses its ...

Intensive care patients' muscles unable to use fats for energy

July 12, 2018
The muscles of people in intensive care are less able to use fats for energy, contributing to extensive loss of muscle mass, finds a new study co-led by UCL, King's College London and Guy's and St Thomas' NHS Foundation Trust.

Blood biomarker can help predict disease progression in patients with COPD

July 12, 2018
Some patients with COPD demonstrate signs of accelerated aging. In a new study published in the journal CHEST researchers report that measuring blood telomeres, a marker of aging of cells, can be used to predict future risk ...

Rogue molecules provoke out-of-control scar tissue, strangle organs

July 12, 2018
Normal scar tissue forms to heal an internal wound and quietly retreats when the job is done. But in many common diseases—kidney, liver and lung fibrosis—the scar tissue goes rogue and strangles vital organs. These diseases ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.