Research in mice paves way to teasing out cause and effect between gut microbes and disease

December 6, 2017, Harvard Medical School
Credit: CC0 Public Domain

Clearing a major hurdle in the field of microbiome research, Harvard Medical School scientists have designed and successfully used a method to tease out cause-and-effect relationships between gut bacteria and disease.

Reporting Dec. 6 in Nature, the team says the approach could propel research beyond mere microbiome- associations and elucidate true cause-effect relationships.

The experiments, conducted in , also identify a previously unknown gut microbe that tames intestinal inflammation and protects against severe colitis. The researchers say the finding makes a strong case for testing the newly identified gut bacterium as a probiotic therapy in people with , a constellation of conditions marked by chronic inflammation of the intestines and estimated to affect up to 1.3 million people in the United States, according to the Centers for Disease Control and Prevention.

The approach uses a sort of "microbial triangulation." It mimics the principles of classic maritime navigation or, in more modern terms, tracking the location of a mobile phone by verifying data from multiple sources—but instead of stars or cell phone towers, the researchers are homing in on intestinal bugs. Based on the method of elimination, the technique involves the gradual narrowing down of to identify specific microbes that modulate the risk for specific diseases. In the current study, researchers adapted the principles to identify beneficial, protective bacteria.

"Our approach can help scientists find the proverbial needles in a 'haystack' of thousands of microbes that are currently thought to modulate health," said investigator Dennis Kasper, professor of microbiology and immunobiology at Harvard Medical School. "If the field is to move past associations—the Achilles' heel in microbiome research—we need a system that reliably teases out causative relationships between and disease. We believe our method achieves that," added Kasper, who is also the Harvard Medical School William Ellery Channing Professor of Medicine at Brigham and Women's Hospital.

Over the last decade, study after study has identified thousands of commensal microbes—those residing innocently in our bodies—and catalogued observations of possible links between groups of microbes and the presence or absence of a panoply of diseases, including diabetes, multiple sclerosis and inflammatory bowel disease. Yet, scientists don't know whether and how the presence of specific microbes—or fluctuations in their numbers—affects health. It remains unclear whether certain microbes are innocent bystanders, mere markers of disease, or whether they are active agents, causing harm or providing protection against certain ailments.

The holy grail of this work would be not to merely define whether a microbe fuels or minimizes the risk for a given disease but to discover microbes and microbial molecules that can be used therapeutically.

"The ultimate goal is to clarify the mechanisms of disease and then identify bacterial molecules that can be used to treat, reverse or prevent it," said study lead author Neeraj Surana, Harvard Medical School instructor in pediatrics and an infectious disease specialist at Boston Children's Hospital.

Old-fashioned detective work

For their study, Kasper and Surana compared the gut microbiomes of several groups of mice that harbored different populations of .

The researchers started out with two groups of mice. One group had been bred with human gut microbiomes—housing intestinal bacteria normally found in human intestines. The other group had been bred to harbor normal mouse microbiomes. When researchers gave the animals a chemical compound that triggered , or colitis, mice that harbored human intestinal microbes were protected from the effects of the disease. Mice whose guts harbored typical mouse bacteria, however, developed severe symptoms.

Next, the researchers housed all mice in the same living space. Sharing living space for as briefly as one day led to noticeable changes in how the animals responded to disease. Mice that had been originally protected from colitis started showing more serious signs of it, while colitis-prone mice grew increasingly resistant to the effects of the condition and developed milder symptoms—a proof-of-principle finding which shows that exchange of intestinal bacteria through shared living space can lead to changes in the animals' ability to cope with the disease.

The needle in the haystack

The disease-modulating microbe would be lurking amid the hundreds of bacterial species present in all mice. But given that each mouse group harbored between 700 and 1,100 bacterial species in their guts, how could scientists identify the one that truly mattered in colitis? The team began by analyzing the intestinal makeup of each one of the mouse groups, comparing their microbial profiles before and after they shared a living space. To "triangulate" the suspect's identity, scientists looked for microbes that were either scarce or abundant, tracking with colitis severity. In other words, the numbers of the causative microbe would either go up or down with disease severity, the scientists reasoned. Only one such microbial group fit the profile—a bacterial family known as Lachnospiraceae, commonly found in human intestines as well as the guts of other mammals.

To pinpoint the one organism within the Lachnospiraceae family that regulates response to colitis, the researchers isolated one bacterial species and gave it to colitis-prone mice. To compare its effects against other microbes, they also gave the animals organisms from different bacterial families. The only bacterium that protected colitis-prone animals from the ravages of the disease was a never-before-described microbe that the researchers had isolated from the guts of mice seeded with human feces, the animals that had harbored human microbiomes. The microbe was notably absent from mice with mouse microbiomes. Because of its immune-protective properties, Kasper and Surana christened the newly identified organism Clostridium immunis.

The isolation of the disease-modifying microbe makes a powerful case for testing it as therapy in people with inflammatory bowel disease, the researchers said.

Taken together, the team said, the experiments show that a model of winnowing the list of possible microbial suspects down to the level of individual species is not only feasible but critical in unmasking specific disease-modulating .

Explore further: Exercise changes gut microbial composition independent of diet, team reports

More information: Moving beyond microbiome-wide associations to causal microbe identification, Nature (2017). nature.com/articles/doi:10.1038/nature25019

Related Stories

Exercise changes gut microbial composition independent of diet, team reports

December 4, 2017
Two studies - one in mice and the other in human subjects - offer the first definitive evidence that exercise alone can change the composition of microbes in the gut. The studies were designed to isolate exercise-induced ...

Changes in bacterial mix linked to antibiotics increase risk for inflammatory bowel disease

November 27, 2017
Exposure to antibiotics in mothers may increase risk for inflammatory bowel diseases in their offspring. This is the finding of a study in mice led by researchers from NYU School of Medicine and published Nov. 27 in the journal ...

Smoking may cause inflammatory bowel disease

October 31, 2017
A new study shows a direct effect of cigarette smoke on intestinal inflammation for the first time. Researchers in South Korea report that exposing mice to cigarette smoke results in colitis, an inflammation of the colon ...

Intestinal fungi may aid in relief of inflammatory disease

June 23, 2016
Fungi that live in a healthy gut may be as important for good health as beneficial intestinal bacteria, according to new research conducted at Weill Cornell Medicine.

Recommended for you

Space-like gravity weakens biochemical signals in muscle formation

May 23, 2018
Astronauts go through many physiological changes during their time in spaceflight, including lower muscle mass and slower muscle development. Similar symptoms can occur in the muscles of people on Earth's surface, too. In ...

Hotter bodies fight infections and tumours better—researchers show how

May 21, 2018
The hotter our body temperature, the more our bodies speed up a key defence system that fights against tumours, wounds or infections, new research by a multidisciplinary team of mathematicians and biologists from the Universities ...

Deep space radiation treatment reboots brain's immune system

May 21, 2018
Planning a trip to Mars? You'll want to remember your anti-radiation pills.

Receptor proteins that respond to nicotine may help fat cells burn energy

May 21, 2018
The same proteins that moderate nicotine dependence in the brain may be involved in regulating metabolism by acting directly on certain types of fat cells, new research from the University of Michigan Life Sciences Institute ...

Atomic-level study reveals why rare disorder causes sudden paralysis

May 21, 2018
A rare genetic disorder in which people are suddenly overcome with profound muscle weakness is caused by a hole in a membrane protein that allows sodium ions to leak across cell membranes, researchers at the University of ...

New era for blood transfusions through genome sequencing

May 18, 2018
Most people are familiar with A, B, AB and O blood types, but there are hundreds of additional blood group "antigens" on red blood cells—substances that can trigger the body's immune response—that differ from person to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.