Research suggests new pathways for hyperaldosteronism

December 7, 2017
Ze'ev Ronai, Ph.D., chief scientific advisor, Professor, Tumor Initiation and Maintenance Program, SBP. Credit: Sanford Burnham Prebys Medical Discovery Institute

A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP), in collaboration with researchers at Eunice Kennedy Shriver National Institute of Child Health and Human Development, part of the National Institutes of Health, identifies a mechanism that explains the development of hyperaldosteronism. The findings, published in JCI Insight, offer a path for drug discovery to treat the condition, which causes the majority of secondary hypertension.

About 10 percent of people with have secondary hypertension, meaning that the root cause of the disease is known. In such cases, when the root cause is treated, blood pressure usually returns to normal or is significantly lowered. Hyperaldosteronism, a condition in which the adrenal glands produce too much aldosterone, is the most common cause of secondary hypertension.

"Our research, based on a genetic model, identifies an unexpected layer in the regulation of adrenal gland development and in hyperaldosteronism," says Ze'ev Ronai, Ph.D., chief scientific advisor of SBP and senior author of the paper. "The findings are important because they identify a previously unknown regulatory axis that controls aldosterone levels, thus offering new avenues for of secondary hypertension.

The body's adrenal glands produce a number of essential hormones, including aldosterone, which balances sodium and potassium in the blood. In hyperaldosteronism, the adrenal glands produce too much aldosterone, leading to low levels of potassium and increased sodium. Excess sodium leads to water retention, increasing the blood volume and .

"We initially found that the structure of the in mice lacking the Siah1 ubiquitin ligase gene was markedly different and they had increased levels of aldosterone," says Marzia Scortegagna, Ph.D., staff scientist in Ronai's laboratory and lead author of the paper. "Upon further examination, we noted elevated levels of PIAS1, a Siah1 controlled protein, which is a key regulator of , the precursor for aldosterone synthesis."

"Siah1 is a ubiquitin ligase that plays an important role in a number of cellular pathways, implicated in neurodegeneration and cancer" says Ronai. "Our results are the first to identify the role of this gene in hyperaldosteronism through its control of cholesterol biosynthesis involving PIAS1."

"Patients that suffer from hyperaldosteronism exhibit mutations or epigenetic deregulation of the key pathway components, pointing to the relevance of our findings to humans and the justification for further exploration of this pathway for therapeutic purposes," says Constantine Stratakis, M.D., head of the Section on Endocrinology and Genetics at the National Institute of Child Health and Human Development (NICHD) at the NIH, and co-author of the study.

Explore further: Researchers use a pump-induced disease to define underlying molecular mechanism

Related Stories

Researchers use a pump-induced disease to define underlying molecular mechanism

October 26, 2017
Researchers at Texas Tech University Health Sciences Center (TTUHSC) investigated a pump-induced disease and defined the molecular mechanism that triggers it. The study, "On the effect of hyperaldosteronism-inducing mutations ...

Endocrine Society experts call for expanded screening for primary aldosteronism

April 26, 2016
The Endocrine Society today issued a Clinical Practice Guideline calling on physicians to ramp up screening for primary aldosteronism, a common cause of high blood pressure.

Scientists name 'Connshing syndrome' as a new cause of high blood pressure

April 21, 2017
Research led by scientists at the University of Birmingham has revealed a new cause of high blood pressure which could lead to major changes in managing the disease.

Endocrine Society issues statement to improve detection of curable forms of hypertension

April 6, 2017
A new Scientific Statement issued by the Endocrine Society advises healthcare providers on ways to spot hormonal causes of high blood pressure that can be cured with surgery or treated effectively with medication.

Common genetic mutation increases sodium retention, blood pressure

May 30, 2012
Nearly 40 percent of the small adrenal tumors that cause big problems with high blood pressure share a genetic mutation that causes patients to retain too much sodium, researchers report.

Recommended for you

Ultra-thin tissue samples could help to understand and treat heart disease

December 12, 2017
A new method for preparing ultra-thin slices of heart tissue in the lab could help scientists to study how cells behave inside a beating heart.

Young diabetics could have seven times higher risk for sudden cardiac death

December 12, 2017
Young diabetics could have seven times more risk of dying from sudden cardiac arrest than their peers who don't have diabetes, according to new research.

Blood flow–sensing protein protects against atherosclerosis in mice

December 12, 2017
UCLA scientists have found that a protein known as NOTCH1 helps ward off inflammation in the walls of blood vessels, preventing atherosclerosis—the narrowing and hardening of arteries that can cause heart attacks and strokes. ...

Half of people aged 40-54 have hardened arteries: study

December 11, 2017
Half of middle-aged people who are normal weight and don't smoke or have diabetes may have clogged arteries, researchers said Thursday, urging stronger measures to lower cholesterol.

Research suggests new pathways for hyperaldosteronism

December 7, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP), in collaboration with researchers at Eunice Kennedy Shriver National Institute of Child Health and Human Development, part of the ...

One-dose gene therapy produces clotting factor, safely stops bleeding in hemophilia B patients

December 6, 2017
A team of gene therapy researchers has reported positive results in a phase 1/2 clinical trial for the inherited bleeding disorder hemophilia B. A single intravenous infusion of a novel bioengineered gene therapy treatment ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.