Tapeworm drug could lead the fight against Parkinson's disease

December 12, 2017, Cardiff University
Immunohistochemistry for alpha-synuclein showing positive staining (brown) of an intraneural Lewy-body in the Substantia nigra in Parkinson's disease. Credit: Wikipedia

Researchers at Cardiff University, in collaboration with the University of Dundee, have identified a drug molecule within a medicine used to treat tapeworm infections which could lead to new treatments for patients with Parkinson's disease.

Parkinson's disease is a long-term degenerative disorder of the central nervous system that, according to the charity, Parkinson's UK, affects one person in every 500. That means an estimated 127,000 people are currently living with Parkinson's disease in the UK alone.

Over the last decade or so, researchers striving to find a cure for this debilitating disease have focused their attention on a protein found in the known as PINK1. It's understood that the malfunction of this protein is one of the leading causes of Parkinson's disease.

Several studies have suggested that discovering a drug which is capable of enhancing the function of PINK1 could be a significant step in halting neurodegeneration and therefore slow down or even treat Parkinson's disease.

With this knowledge in mind, researchers at Cardiff and Dundee Universities have discovered that a drug traditionally used to treat tapeworm infections, named Niclosamide, is also an effective activator of the PINK1 protein.

Furthermore, the research, funded by The Welcome Trust, revealed that Niclosamide and some of its derivatives could enhance PINK1 performance within cells and neurons. This has given the researchers reason to believe that this drug could provide new hope for patients living with Parkinson's disease.

Dr Youcef Mehellou, from Cardiff University's School of Pharmacy and Pharmaceutical Sciences, who co-lead the study, said: "This work represents the first report of a clinically used to activate PINK1 and may hold promise in treating Parkinson's disease. We will now take our findings to the next level by evaluating the ability of Niclosamide to treat Parkinson's disease in models. This is an exciting stage of our research and we are positive about the long term impact it could have on patients' lives."

Explore further: Scientists solve 3-D structure of key defense protein against Parkinson's disease

More information: Erica Barini et al. The Anthelmintic Drug Niclosamide and its Analogues Activate the Parkinson's Disease Associated Protein Kinase PINK1, ChemBioChem (2017). DOI: 10.1002/cbic.201700500

Related Stories

Scientists solve 3-D structure of key defense protein against Parkinson's disease

October 5, 2017
Scientists at the University of Dundee have identified the structure of a key enzyme that protects the brain against Parkinson's disease.

Good cells gone bad: Scientists discover PINK-SNO

November 21, 2017
A new study from The Scripps Research Institute (TSRI) is the first to show precisely how a process in nerve cells called the S-nitrosylation (SNO) reaction—which can be caused by aging, pesticides and pollution—may contribute ...

Molecular 'on-off' switch for Parkinson's disease discovered

May 23, 2012
(Medical Xpress) -- Scientists at the Medical Research Council (MRC) Protein Phosphorylation Unit at the University of Dundee have discovered a new molecular switch that acts to protect the brain from developing Parkinson's ...

Scientists discover a 'switchboard' of molecules that protect against Parkinson's disease

October 27, 2015
A `switchboard' of molecules that play a vital role in protecting the brain against Parkinson's disease has been uncovered by a research team led by the University of Dundee.

Mitochondrial lipids as potential targets in early onset Parkinson's disease

February 10, 2017
A team of researchers led by Patrik Verstreken (VIB–KU Leuven) have identified an underlying mechanism in early onset Parkinson's. Using flies, mice and patient cells, the team focused on cardiolipin, a fat unique to cells' ...

Discovery of genetic 'switch' could help to prevent symptoms of Parkinson's disease

February 17, 2017
A genetic 'switch' has been discovered by MRC researchers at the University of Leicester which could help to prevent or delay the symptoms of Parkinson's disease.

Recommended for you

Parkinson's disease 'jerking' side effect detected by algorithm

January 8, 2018
A mathematical algorithm that can reliably detect dyskinesia, the side effect from Parkinson's treatment that causes involuntary jerking movements and muscle spasms, could hold the key to improving treatment and for patients ...

New brainstem changes identified in Parkinson's disease

January 4, 2018
A pioneering study has found that patients with Parkinson's disease have more errors in the mitochondrial DNA within the brainstem, leading to increased cell death in that area.

Caffeine level in blood may help diagnose people with Parkinson's disease

January 3, 2018
Testing the level of caffeine in the blood may provide a simple way to aid the diagnosis of Parkinson's disease, according to a study published in the January 3, 2018, online issue of Neurology, the medical journal of the ...

Researchers shed light on why exercise slows progression of Parkinson's disease

December 22, 2017
While vigorous exercise on a treadmill has been shown to slow the progression of Parkinson's disease in patients, the molecular reasons behind it have remained a mystery.

Robotic device improves balance and gait in Parkinson's disease patients

December 19, 2017
Some 50,000 people in the U.S. are diagnosed with Parkinson's disease (PD) every year. The American Institute of Neurology estimates there are one million people affected with this neurodegenerative disorder, with 60 years ...

New findings point to potential therapy for Parkinson's Disease

December 19, 2017
A new study, published in Proceedings of the National Academy of Sciences (PNAS), sheds light on a mechanism underlying Parkinson's disease and suggests that Tacrolimus—an existing drug that targets the toxic protein interaction ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.