Good cells gone bad: Scientists discover PINK-SNO

November 21, 2017, The Scripps Research Institute

A new study from The Scripps Research Institute (TSRI) is the first to show precisely how a process in nerve cells called the S-nitrosylation (SNO) reaction—which can be caused by aging, pesticides and pollution—may contribute to Parkinson's disease.

The leader of the study, TSRI Professor Stuart Lipton, M.D., Ph.D., is now investigating how new pharmaceuticals might counteract this harmful S-nitrosylation reaction.

"The new finding gives us a clue as to where to intervene," said Lipton, who holds a joint position at the University of California, San Diego, School of Medicine, where he is a practicing clinical neurologist involved in the care of Parkinson's patients.

The study was published today in the journal Cell Reports.

'PINK-SNO Man' Implicated in Parkinson's

The SNO reaction attaches a nitric oxide-like molecule to protein called PINK1, where the molecule attaches to a building block on PINK1 called a cysteine residue. This changes PINK1's activity—and its ability to do its job.

Since Lipton's group co-discovered the SNO reaction some 20 years ago, scientists have linked the reaction to protein misfolding and in cases of Alzheimer's, Huntington's, amyotrophic lateral sclerosis (ALS/Lou Gehrig's disease) and Parkinson's disease, as well as heart/cardiovascular disease and cancer.

In the new study, Lipton and his colleagues used human stem cell and mouse models to show exactly how SNO can trigger cell death in Parkinson's disease. They found that when SNO modifies PINK1, cannot recruit another protein called Parkin to get rid of damaged mitochondria.

"Mitochondria are the energy powerhouses of the cell," explained Lipton. Because neurons need a lot of energy, Lipton said, it is especially crucial for them to use only healthy mitochondria and get rid of the damaged ones. Mitochondria can be damaged as people age and cells experience various forms of stress, and it is the job of PINK1 to help trigger a process called mitophagy to remove those dysfunctional mitochondria.

Previous studies had shown that inherited mutations to the gene that codes for PINK1 can stop a person from making working versions of the protein. This means their neurons cannot clear damaged mitochondria, and those cells eventually die—which can cause Parkinson's.

The SNO reaction seems to cause this same problem, but it is not inherited. Instead, cells start "SNO-ing" proteins when they get overwhelmed by reactive nitrogen molecules. "The quantities of these reactive chemical species get so high that cells start SNO-ing proteins, like PINK1, that would normally not be SNO-ed," said Lipton. The researchers call this the PINK-SNO complex, or a "PINK-SNO man."

"Formation of PINK-SNO is definitely harmful to nerve cells in the Parkinson's brain," said Lipton.

So where are these reactive nitrogen species coming from? The scientists noted that can generate excessive nitric oxide in response to pesticide exposure, other toxins, and possibly even air pollution.

"This is a scary thought, but also a hopeful thought," said Lipton. "if we can figure out how we're doing this to ourselves, we may be able to control it."

The new study adds to the evidence that some degenerative brain diseases appear to be caused by a combination of genetics and environment. Lipton explained that genetics may leave some people "predisposed" to be at risk for SNO-related Parkinson's.

Because humans inherit two copies (one from each parent) of the gene that encodes PINK1, we all have at least one copy of the gene if the other is mutated. Depending on the protein, this may or may not be sufficient for normal function.

"But, in any event, if the translated from the remaining good copy of the gene is then targeted by SNO, then you are stuck making dysfunctional PINK1 even from the remaining good copy of the gene," said Lipton. "The take-home message here is that the environment may affect you based on your individual genetics, and thus both are influential in causing diseases like Parkinson's."

Interestingly, Lipton's team found that SNO-ing appears to occur early in disease progression—early enough that intervention may be able to save brain function. He said the next step is to study how we can prevent these aberrant SNO reactions on particular proteins like PINK1.

Explore further: PINK1 protein crucial for removing broken-down energy reactors

Related Stories

PINK1 protein crucial for removing broken-down energy reactors

August 12, 2015
Cells are powered by tiny energy reactors called mitochondria. When damaged, they leak destructive molecules that can cause substantial harm and eventually kill brain cells. Scientists at the NIH's National Institute of Neurological ...

Scientists solve 3-D structure of key defense protein against Parkinson's disease

October 5, 2017
Scientists at the University of Dundee have identified the structure of a key enzyme that protects the brain against Parkinson's disease.

Single mutation in recessive gene increases risk of earlier onset Parkinson's disease

November 2, 2016
A collaboration of 32 researchers in seven countries, led by scientists at Mayo Clinic's campus in Florida, has found a genetic mutation they say confers a risk for development of Parkinson's disease earlier than usual.

Discovery of genetic 'switch' could help to prevent symptoms of Parkinson's disease

February 17, 2017
A genetic 'switch' has been discovered by MRC researchers at the University of Leicester which could help to prevent or delay the symptoms of Parkinson's disease.

Mitochondrial lipids as potential targets in early onset Parkinson's disease

February 10, 2017
A team of researchers led by Patrik Verstreken (VIB–KU Leuven) have identified an underlying mechanism in early onset Parkinson's. Using flies, mice and patient cells, the team focused on cardiolipin, a fat unique to cells' ...

Recommended for you

Genomic dark matter activity connects Parkinson's and psychiatric diseases

September 20, 2018
Dopamine neurons are located in the midbrain, but their tendril-like axons can branch far into the higher cortical areas, influencing how we move and how we feel. New genetic evidence has revealed that these specialized cells ...

Gene therapy shown to remove core component of Parkinson's disease

September 14, 2018
An international team led by Rush researcher Jeffrey Kordower, Ph.D., has moved a step closer to developing a treatment to clear brain cells of a protein that is an integral cause of Parkinson's disease. The team published ...

ADHD may increase risk of Parkinson's disease and similar disorders

September 12, 2018
While about 11 percent of children (4-17 years old) nationwide have been diagnosed with attention-deficit hyperactivity disorder (ADHD), the long-term health effects of having ADHD and of common ADHD medications remains understudied. ...

New high-throughput screening study may open up for future Parkinson's disease therapy

September 11, 2018
Parkinson's disease (PD) is the most common movement disorder in the world. PD patients suffer from shaking, rigidity, slowness of movement and difficulty with walking. It is a neurodegenerative disease caused by the loss ...

Marmosets serve as an effective model for non-motor symptoms of Parkinson's disease

September 5, 2018
Small, New World monkeys called marmosets can mimic the sleep disturbances, changes in circadian rhythm, and cognitive impairment people with Parkinson's disease develop, according to a new study by scientists at Texas Biomedical ...

Novel brain network linked to chronic pain in Parkinson's disease

August 28, 2018
Scientists have revealed a novel brain network that links pain in Parkinson's disease (PD) to a specific region of the brain, according to a report in the journal eLife.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.