Study identifies brain circuit controlling social behavior

January 11, 2018, Elsevier
Credit: CC0 Public Domain

A new study by researchers at Roche in Basel, Switzerland has identified a key brain region of the neural circuit that controls social behavior. Increasing the activity of this region, called the habenula, led to social problems in rodents, whereas decreasing activity of the region prevented social problems.

The study, which appears in Biological Psychiatry, suggests that social impairments characteristic of autism spectrum disorder may stem from alteration of activity in this circuit, and that tuning this circuit may help treat the social deficits in the disorder.

"We are excited about this study as it identifies a circuit that may play a critical role in social reward, which is affected in autism," said senior author Dr. Anirvan Ghosh, who was the Head of Neuroscience Research at Roche and now serves as Head of Research and Early Development at Biogen. The findings provide clues as to what may be altered in the brain to lead to neurodevelopmental conditions like autism spectrum disorder.

Previous research has linked social function to the prefrontal region of the brain, but that affect prefrontal control of social behavior were unknown. So first author Dr. Madhurima Benekareddy and colleagues activated the prefrontal region in mice and rats, and performed a brain-wide screen to find which regions responded. The screen identified changes in activity in regions related to emotional behavior, particularly in the habenula.

In the study, the researchers then used a combination of different techniques to map the connections from the habenula to the frontal area of the brain, and to precisely control the activity of neurons in these regions. Turning up the activity of neurons in the habenula reduced how much the rats and mice socialized. Turning down habenula activity prevented the social deficits that could be induced by activating the frontal region.

According to the authors, an alteration of the normal activity range for the circuit may cause behavioral function in such as autism spectrum disorder. "Understanding how altered brain function leads to could help develop novel targeted therapeutics for autism spectrum disorder," said Ghosh, such as by tuning the circuit to correct the altered activity.

The findings also have implications for diseases other than , including schizophrenia and depression. The circuit incorporates brain regions involved in reward and pleasure, leading the authors to consider that social dysfunction may stem from reduced enjoyment in social interaction. "It is interesting that the circuit implicated in in this study is also a circuit implicated in the biology of depression," said Dr. John Krystal, Editor of Biological Psychiatry. "Perhaps this circuit represents a pathway through which disruptions in social relationships contribute to negative mood states and depression."

Explore further: Autism therapy: Brain stimulation restores social behavior in mice

More information: Madhurima Benekareddy et al. Identification of a Corticohabenular Circuit Regulating Socially Directed Behavior, Biological Psychiatry (2017). DOI: 10.1016/j.biopsych.2017.10.032

Related Stories

Autism therapy: Brain stimulation restores social behavior in mice

December 13, 2017
Scientists are examining the feasibility of treating autistic children with neuromodulation after a new study showed social impairments can be corrected by brain stimulation.

Social phobia linked to autism and schizophrenia

December 11, 2017
New Swinburne research shows that people who find social situations difficult tend to have similar brain responses to those with schizophrenia or autism.

New method to identify causal mechanisms in depression

December 6, 2017
People with major depressive disorder have alterations in the activity and connectivity of brain systems underlying reward and memory, according to a new study in Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. ...

Study examines brain activity and anxiety symptoms in youth with autism spectrum disorder

December 6, 2017
The error-related negativity (ERN) is a brain signal response to errors that is thought to reflect threat sensitivity and has been implicated in anxiety disorders in individuals without autism spectrum disorder (ASD). A new ...

Holding a mirror to brain changes in autism

March 2, 2012
Impaired social function is a cardinal symptom of autism spectrum disorders (ASDs). One of the brain circuits that enable us to relate to other people is the "mirror neuron" system. This brain circuit is activated when we ...

Autism-linked gene stunts developing dendrites

December 4, 2017
Increased expression of a gene linked to autism spectrum disorders (ASDs) leads to a remodeling of dendrites during brain development, according to a new study conducted in cultured neurons and an ASD mouse model published ...

Recommended for you

The connection between alcoholism and depression

September 21, 2018
Alcoholism and depression often go hand-in-hand.

White matter repair and traumatic brain injury

September 20, 2018
Traumatic brain injury (TBI) is a leading cause of death and disability in the U.S., contributing to about 30 percent of all injury deaths, according to the CDC. TBI causes damage to both white and gray matter in the brain, ...

'Gut sense' is hardwired, not hormonal

September 20, 2018
If you've ever felt nauseous before an important presentation, or foggy after a big meal, then you know the power of the gut-brain connection.

Genomic dark matter activity connects Parkinson's and psychiatric diseases

September 20, 2018
Dopamine neurons are located in the midbrain, but their tendril-like axons can branch far into the higher cortical areas, influencing how we move and how we feel. New genetic evidence has revealed that these specialized cells ...

Full, but still feasting: Mouse study reveals how urge to eat overpowers a signal to stop

September 20, 2018
Almost everyone knows the feeling. You're at a restaurant or a holiday meal, and your stomach is telling you it's full, so logically you know you should stop eating.

Gut branches of vagus nerve essential components of brain's reward and motivation system

September 20, 2018
A novel gut-to-brain neural circuit establishes the vagus nerve as an essential component of the brain system that regulates reward and motivation, according to research conducted at the Icahn School of Medicine at Mount ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.